摘要
研究成对型复微分差分多项式P(f)L(g)-a(z)和P(g)L(f)-a(z)的零点情况,其中L(h)取线性微分多项式D(h),线性差分多项式Q(z,h)以及线性微分差分多项式D(z,h),P(z)是z的非常数多项式,a(z)是f(z)和g(z)的非零小函数。另外,研究了成对型复微分差分多项式分担公共小函数的唯一性问题。
In this paper,we study the zeros distribution of the paired differential-difference polynomials P(f)L(g)-a(z)and P(g)L(f)-a(z),where L(h)takes linear differential polynomials D(h)or linear difference polynomials Q(z,h)or linear differential-difference polynomials D(z,h),P(z)is a non-constant polynomial of z,and a(z)is a non-zero small function with respect to and f(z)and g(z).The related uniqueness problems of complex differential-difference polynomials are also considered.
作者
刘凯
高迎春
LIU Kai;GAO Yingchun(Department of Mathematics,Nanchang University,Nanchang 330031,China)
出处
《南昌大学学报(理科版)》
CAS
北大核心
2021年第3期205-210,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(12061042),江西省自然科学基金资助项目(20202BAB201003)。
关键词
微分差分多项式
唯一性
亚纯函数
Hayman猜想
零点
Differential-difference polynomials
uniqueness
meromorphic functions
Hayman Conjecture
zeros