期刊文献+

一种高效的双边聚类集成算法 被引量:1

An Efficient Bilateral Clustering Ensemble Algorithm
下载PDF
导出
摘要 谱聚类可以任意形状的数据进行聚类,在聚类集成中能够有效的提高基聚类的质量。以往的聚类集成算法中,聚类集成得到的结果并不是最终聚类结果,还需要利用聚类算法来获得最终聚类结果,在整个过程中会使得解由离散-连续-离散的转变。提出了一种基于谱聚类的双边聚类集成算法。算法首先在生成阶段使用谱聚类算法来获得基聚类,通过标准互信息来选取基聚类。将选出来基聚类和样本作为图的顶点,并对构建的图利用双边聚类算法对基聚类和样本同时聚类直接得到最终聚类结果。在实验中,将所提方法与一些聚类集成算法进行了比较,取得了较好的结果。 Spectral clustering can cluster data of any shape,which can effectively improve the quality of basic clustering in clustering ensemble.In previous clustering ensemble algorithms,the result obtained by clustering ensemble algorithm is not the final clustering result.It is also necessary to use the clustering algorithm to obtain the final clustering result.During the entire process,the solution will change from discrete to continuous to discrete.This paper proposes a bilateral clustering ensemble algorithm based on spectral clustering.Firstly,a spectral clustering algorithm was used to obtain base clusters in the generation stage,and the normalized mutual information was used to select the base clusters.The selected base clusters and samples were used as the vertices of the graph,and the bilateral clustering algorithm was used to cluster the base clusterings and samples simultaneously to obtain the final clustering results directly.In the experiments,the method in this paper was compared with some clustering ensemble algorithms,and the algorithm in this paper has achieved good results.
作者 杨辉 彭晗 朱建勇 聂飞平 YANG Hui;PENG Han;ZHU Jian-yong;NIE Fei-ping(School of Electrical and Automation,East China Jiaotong University,Jiangxi,Nanchang Jiangxi 330013,China;Key Laboratory of Advanced Control and Optimization of Jiangxi Province,Nanchang Jiangxi 330013,China;Center for Optical Image Analysis and Learning,Northwestern Polytechnical University,Xi^Shanxi 710072,China)
出处 《计算机仿真》 北大核心 2021年第8期328-332,343,共6页 Computer Simulation
基金 国家自然科学基金地区项目(61563015,61963015) 国家自然科学基金重点项目(61733005) 江西省自然科学基金项目(20171ACB21039,20192BAB207024) 江西省教育厅科技项目(GJJ150552,GJJ170376)。
关键词 聚类集成 聚类 谱聚类 基聚类 Clustering ensemble Clustering Spectral clustering Base clustering
  • 相关文献

参考文献3

二级参考文献16

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3Jain A K,Murty M N,Flynn P J. Data Clustering:A Review[J].{H}ACM COMPUTING SURVEYS,1999,(03):264323.
  • 4Jain A K. Data Clustering:50 Years Beyond K-means[J].Pattern Rec-ognition Letters,2010,(08):651666.
  • 5Celeb M,Kingravi H,Vela P. A Comparative Study of Efficient Initial-ization Methods for the K-Means Clustering Algorithm[J].Expert Sys-tems with Applications,2013,(01):200210.
  • 6Forgy E. Cluster Analysis of Multivariate Data:Efficiency vs.Interpret-ability of Classification[J].{H}BIOMETRICS,1965.768.
  • 7MacQueen J. Some Methods for Classification and Analysis of Multivari-ate Observations[A].1967.281297.
  • 8Ball G H,Hall D J. A Clustering Technique for Summarizing Multivari-ate Data[J].{H}Behavioral Science,1967,(02):153155.
  • 9Gonzalez T. Clustering to Minimize the Maximum Intercluster Distance[J].{H}Theoretical computer science,1985,(2 3):293306.
  • 10Katsavounidis I,Kuo C C J,Zhang Z. A New Initialization Technique for Generalized Lloyd Iteration[J].{H}IEEE Signal Processing Letters,1994,(10):144146.

共引文献1098

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部