期刊文献+

基于H5和MUI的移动教学APP的设计与实现

Design and Implementation of Mobile Teaching APP Based on H5 and MUI
下载PDF
导出
摘要 随着移动互联网的快速发展,人们对移动学习的需求越来越高。本文基于H5和MUI技术开发了一款移动教学APP。该APP中:教师精心组织并上传学习资源;管理员对教师上传的资源进行审核并发布;学生登录平台寻找适合自己的资源进行学习。系统根据学习记录和评价,预测用户的偏好,并向用户推荐更加适合的学习资源。该APP极大满足了个性化的移动学习需求,有效提高了学生的学习兴趣和教师的教学质量。 With the rapid development of mobile Internet, people’s demand for mobile learning is higher and higher. This paper develops a mobile teaching app based on H5 and Mui technology. In this app: teachers carefully organize and upload learning resources;The administrator reviews and publishes the resources uploaded by teachers;Students log in to the platform to find suitable resources for learning. The system predicts users’ preferences according to learning records and evaluation, and recommends more suitable learning resources to users. The app greatly meets the personalized mobile learning needs and effectively improves students’ learning interest and teachers’ teaching quality.
作者 朱珍元 李娟 张林静 郭标 ZHU Zhenyuan;LI Juan;ZHANG Linjing;GUO Biao(Department of Information Management,Anhui Vocational College of Police Officers,Hefei Anhui 230031,China)
出处 《信息与电脑》 2021年第16期110-113,共4页 Information & Computer
基金 2019年安徽省质量工程大规模在线开放课程Mooc示范项目“JavaScript高级编程”(项目编号:2019mooc479)。
关键词 H5 MUI 移动教学 H5 MUI mobile teaching
  • 相关文献

参考文献7

二级参考文献34

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information Tapestry[J]. Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P, Iacovou N, Suchak M, et al. GroupLens: An open architecture for collaborative filtering of netnews[C]//Proc, of the ACM CSCW' 94 Conf. on Computer Supported Cooperative Work. Chapel Hill:ACM, 1994:175-186.
  • 4Shardanand U,Mages'P. Social information filtering:Algorithms for automating "Word of Mouth"[C]//Proc. of the ACM CHI' 95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995:210-217.
  • 5Hill M, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use[C]//Proc, of the ACM CHI'95 Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995 : 194-201.
  • 6Claypool M, Gokhale A, Miranda T, et al. Combining contentbased and collaborative filters in an online newspaper [C]// ACM SIGIR' 99 Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley: ACM, 1999.
  • 7Linden G, Smith B, York J. Amazon. com recommendations: Itern-to-item collaborative filtering[J]. IEEE Internet Computing,2003,7(1) :76-80.
  • 8Holmquist L E,Jacobsson M, Rost M. When media gets wise: Collaborative filtering with mobile media agents [C]//Proc. of the IUI 2006, the 10^th Int'l Conf. on Intelligent User Interfaces. Sydney. http://portal. acm.org/, 2006.
  • 9Park S T, Pennock D M. Applying collaborative filtering techniques to movie search for better ranking and browsing[C]// Proc. of the 13th ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2007 : 550- 559.
  • 10Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proc. of 10^th Int'l World Wide Web Conf. New York: ACM Press, 2001:285-295.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部