摘要
针对无线传感器网络稀疏信号重构问题,提出了一种基于嵌入伪测量的平方根无迹卡尔曼一致滤波(SRUKCF)的分布式稀疏非线性信号重构算法。融合来自无线传感器网络中不同节点的随机线性测量值,使各滤波器对稀疏非线性信号的估计达到一致。仿真结果验证了该算法的有效性。
In order to deal with the problem of sparse signal reconstruction for wireless sensor networks(WSNs),an distributed sparse signal reconstruction Optimized algorithm based on square root unscented kalman consensus filter(SRUKCF)with embedded pseudo-measurement is proposed in this paper.By fusing the random linear measurements from different nodes in the WSNs,such that all filters can reach a consensus on the estimate of sparse nonlinear signals.The simulation results show that the Optimized algorithm is effect.
作者
张朝霞
李丽霞
罗智勇
刘纪平
ZHANG Zhaoxia;LI Lixia;LUO Zhiyong;LIU Jiping(School of Automation and Information Engineer,Hunan Chemical Industry Vocation Technology College,Zhuzhou Hunan 412004)
出处
《软件》
2021年第8期73-75,97,共4页
Software
基金
湖南省教育厅科学研究项目(17C0552)。
关键词
无线传感器网络
卡尔曼一致滤波
压缩感知
重构算法
wireless sensor network
consensus based kalman filtering
compressive sensing
reconstruction algorithm