期刊文献+

基于卡尔曼一致滤波的分布式稀疏信号重构优化算法

An Optimized Algorithm of Consensus based Kalman Filtering with Distributed Sparse Signal Reconstruction
下载PDF
导出
摘要 针对无线传感器网络稀疏信号重构问题,提出了一种基于嵌入伪测量的平方根无迹卡尔曼一致滤波(SRUKCF)的分布式稀疏非线性信号重构算法。融合来自无线传感器网络中不同节点的随机线性测量值,使各滤波器对稀疏非线性信号的估计达到一致。仿真结果验证了该算法的有效性。 In order to deal with the problem of sparse signal reconstruction for wireless sensor networks(WSNs),an distributed sparse signal reconstruction Optimized algorithm based on square root unscented kalman consensus filter(SRUKCF)with embedded pseudo-measurement is proposed in this paper.By fusing the random linear measurements from different nodes in the WSNs,such that all filters can reach a consensus on the estimate of sparse nonlinear signals.The simulation results show that the Optimized algorithm is effect.
作者 张朝霞 李丽霞 罗智勇 刘纪平 ZHANG Zhaoxia;LI Lixia;LUO Zhiyong;LIU Jiping(School of Automation and Information Engineer,Hunan Chemical Industry Vocation Technology College,Zhuzhou Hunan 412004)
出处 《软件》 2021年第8期73-75,97,共4页 Software
基金 湖南省教育厅科学研究项目(17C0552)。
关键词 无线传感器网络 卡尔曼一致滤波 压缩感知 重构算法 wireless sensor network consensus based kalman filtering compressive sensing reconstruction algorithm
  • 相关文献

参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部