期刊文献+

基于径向基函数神经网络与扩张状态观测器的无人直升机控制 被引量:7

Unmanned helicopter control based on radial basis function neural network and extended state observer
下载PDF
导出
摘要 针对具有系统不确定和外部干扰的无人直升机飞行控制问题,提出了一种基于神经网络和扩张状态观测器的控制方法.利用神经网络逼近系统的不确定性,引入扩张状态观测器对神经网络的逼近误差和系统外部干扰进行估计.基于神经网络和扩张状态观测器的输出,对无人直升机的主旋翼挥舞角、姿态角速率、姿态角、速度与位置系统分别进行了控制器设计,以增强系统鲁棒性和抗干扰能力.同时,引入动态面控制方法以避免对虚拟信号进行直接求导,并通过李雅普诺夫方法分析了闭环控制系统的稳定性.最后使用无人直升机数据进行仿真验证,结果表明设计的控制律能使无人直升机有效跟踪控制指令,具有良好的稳定性与鲁棒性. In this paper,a flight control combining neural network and extended state observer is proposed for the unmanned helicopter with system uncertainty and external disturbance.Neural network(NN)is used to approximate the uncertainty of all sub-systems.The extended state observer(ESO)is introduced to estimate the approximation error of the NN and the external disturbance of the system.Based on the output of NN and ESO,the controller of main blade flapping motion,attitude rate,attitude angle,velocity and position systems of unmanned helicopter are designed respectively to enhance the robustness and anti-disturbance ability of the system.Meanwhile,the dynamic surface control method is introduced to avoid the direct derivation of virtual signals.The stability of the control law is analyzed via Lyapunov’s stability theorems.Finally,using the data of an unmanned helicopter to simulate the whole system,the results show that the designed control law can make the unmanned helicopter effectively track the control com-mands,and show good stability and robustness.
作者 侯捷 陈谋 刘楠 HOU Jie;CHEN Mou;LIU Nan(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 211106,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第9期1361-1371,共11页 Control Theory & Applications
基金 国家自然科学基金项目(61803207) 江苏省重点研发计划(社会发展)项目(BE2020704) 江苏省“333高层次人才培养工程”科研项目(BRA2019051)资助.
关键词 无人直升机 飞行控制 动态面控制 神经网络 扩张状态观测器 unmanned helicopter flight control dynamic surface control neural networks extended state observer
  • 相关文献

参考文献8

二级参考文献54

  • 1赵文婷,彭俊毅.基于VORONOI图的无人机航迹规划[J].系统仿真学报,2006,18(z2):159-162. 被引量:50
  • 2王和平,柳长安,李为吉.基于蚁群算法的无人机任务规划[J].西北工业大学学报,2005,23(1):98-101. 被引量:11
  • 3叶媛媛,闵春平,沈林成,常文森.基于VORONOI图的无人机空域任务规划方法研究[J].系统仿真学报,2005,17(6):1353-1355. 被引量:45
  • 4高颖,陈东岳,张立明.一种带有实时视觉特征学习的自主发育机器人探索[J].复旦学报(自然科学版),2005,44(6):964-970. 被引量:6
  • 5Gavrilets V. Autonomous aerobatic maneuvering of minia-ture helicopters [ D ]. Boston : Department of Aeronauticsand Astronautics,Massachusetts Institute of Technology,2003:31-54.
  • 6Cai G,Chen B M,Lee T H. Unmanned rotorcraft systems[M ] . Heidelberg : Springer, 2011:97 -128.
  • 7Tischler M B. Aircraft and rotorcraft system identification[M]. Virginia: American Institute of Aeronautics and As-tronautics, 2003 :321-430.
  • 8Kim H J,Shim D H. A flight control system for aerial ro-bots :algorithms and experiments [ J]. Control EngineeringPractice,2003,11 (2) : 1389-1400.
  • 9Gribble J J. Linear quadratic gaussian/loop transfer reco-very design for a helicopter in low-speed flight [ J ]. Jour-nal of Guidance, Control, and Dynamics, 1993,16 (4 ):754-761.
  • 10Cai G W,Chen B M,Dong X,et al. Design and implemen-tation of a robust and nonlinear flight control system for anunmanned helicopter [ J ]. Mechatronics, 2011, 21 (5):803-820.

共引文献38

同被引文献63

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部