期刊文献+

深度学习框架下类别不平衡数据情感分析 被引量:8

Sentiment Analysis of Class Imbalance Data Under the Framework of Deep Learning
下载PDF
导出
摘要 [目的/意义]将类别不平衡学习方法与深度学习相结合,提升数据不平衡分布下情感分析的性能。[方法/过程]提出LSTM深度学习框架下自适应不平衡数据情感分析方法。不平衡程度低时,对少数类样本进行过采样,然后利用LSTM进行深度学习训练;不平衡程度高时,对多数类样本进行多组均衡化欠采样,然后分别对每组训练数据学习LSTM模型,最后通过集成学习方法,获得最终情感分类结果。[结果/结论]在网络商品评论语料库上的实验结果显示,本方法可以提升类别不平衡数据的深度学习性能,实现不平衡数据的自适应情感分析。 [Purpose/Significance]This paper tries to improve the performance of sentiment analysis under imbalance data distribution by combining class imbalance learning with deep learning.[Method/Process]An adaptive imbalance data sentiment analysis method under the LSTM deep learning framework was proposed.When the degree of imbalance was low,the samples of minority class were oversampled and then LSTM was used for deep learning training.When the degree of imbalance was high,multiple groups of equalization undersampling was carried out for the samples of majority class,and then LSTM model was learned for each group of training data respectively.Finally,the final sentiment classification result was obtained through ensemble learning.[Result/Conclusion]The experimental results on the online commodity comment corpus showed that the method can improve the deep learning performance of class imbalance data and realize the adaptive sentiment analysis of imbalance data.
作者 张志武 薛娟 陈国兰 Zhang Zhiwu;Xue Juan;Chen Guolan(Library,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《现代情报》 CSSCI 2021年第10期75-82,共8页 Journal of Modern Information
基金 江苏省教育科学“十三五”规划专项课题“基于学术大数据的图书馆一流学科服务建设研究”(项目编号:C-c/2020/01/18) 江苏高校哲学社会科学研究项目“基于商品评论情感挖掘的网络消费舆情倾向性分析研究”(项目编号:2015SJD129)。
关键词 深度学习 类别不平衡学习 情感分析 长短期记忆网络 deep learning class imbalance learning sentiment analysis long short term memory networks
  • 相关文献

参考文献9

二级参考文献77

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:93
  • 2Pang B.,Lee L.,Vaithyanathan S.Thumbs up?:Sentiment Classification using Machine LearningTechniques[C] //Proceedings of EMNLP.2002.
  • 3Blitzer J.,Dredze M.,Pereira F.Biographies.Bollywood,Boom-boxes and Blenders:DomainAdaptation for Sentiment Classification[C] //Proceedings of ACL.2007.
  • 4Li S.,Huang C.,Zhou G.,et al.EmployingPersonal/Impersonal Views in Supervised and Semi-supervised Sentiment Classification[C] //Proceedingsof ACL.2010.
  • 5Barandela R.,Sánchez J.S.,García V.,et al.Strategiesfor Learning in Class Imbalance Problems[J].PatternRecognition,2003,36:849-851.
  • 6Kubat M.,Matwin S.Addressing the Curse ofImbalanced Training Sets:One-Sided Selection[C] //Proceedings of ICML.1997.
  • 7Chawla N.,Bowyer K.,Hall L.,et al.SMOTE:Synthetic Minority Over-Sampling Technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
  • 8Juszczak P.,Duin R.Uncertainty Sampling Methodsfor One-Class Classifiers[C] //Proceedings of ICML,Workshop on Learning with Imbalanced Data Sets II.2003.
  • 9Zhou Z.,Liu X.Training Cost-Sensitive NeuralNetworks with Methods Addressing the ClassImbalance Problem[C] //IEEE Transaction onKnowledge and Data Engineering,2006,18:63-77.
  • 10Liu X.,Wu J.,,Zhou Z.Exploratory under-sampling for class-imbalance learning[J].IEEETransactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2009,39(2):539-550.

共引文献275

同被引文献96

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部