期刊文献+

基于融合关系学习网络的行人重识别

Person Re-identification Based on Fusion Relationship Learning Network
下载PDF
导出
摘要 基于图卷积神经网络的行人重识别方法面临两个问题:1)在对特征映射构图时,图节点表达的语义信息不够显著;2)选择特征块构图时仅依赖特征块间的相对距离,忽略内容相似性.为了解决这两个问题,文中提出融合关系学习网络的行人重识别.利用注意力机制,使用最大注意力模型,使最重要的特征块更显著,赋予其语义信息.融合相似性度量,从距离和内容两方面对特征块进行相似性计算,度量方式更全面.该算法能够综合地选取近邻特征块,为图卷积神经网络提供更好的输入图结构,使图卷积神经网络提取更鲁棒的结构关系特征.在iLIDS-VID、MARS数据集上的实验验证文中网络的有效性. There are two problems in person re-identification methods based on graph convolutional network(GCN).While graphs are built for feature maps,the semantic information represented by graph node is not salient.The process of selecting feature blocks to build graph just relies on the relative distance among feature blocks,and the content similarity is ignored.To settle these two problems,an algorithm of person re-identification based on fusion relationship learning network(FRLN)is proposed in this paper.By employing attention mechanism,the maximum attention model makes the most important feature block more salient and assigns semantic information to it.The affinities of feature blocks are evaluated by the fusion similarity metric in the aspect of distance and content,and thus the metric is more comprehensive.By the proposed algorithm,the neighbor feature blocks are selected comprehensively and better input graph structures are provided for GCN.Hence,more robust structure relationship features are extracted by GCN.Experiments on iLIDS-VID and MARS datasets verify the effectiveness of FRLN.
作者 伍子强 常虹 马丙鹏 WU Ziqiang;CHANG Hong;MA Bingpeng(School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049;Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190)
出处 《模式识别与人工智能》 CSCD 北大核心 2021年第9期798-808,共11页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61876171,61976203) 深圳市人工智能与机器人研究院开放项目(No.AC01202005015)资助。
关键词 行人重识别 图卷积神经网络 结构关系 注意力机制 相似性度量 Person Re-identification Graph Convolutional Network Structural Relationship Attention Mechanism Similarity Metric
  • 相关文献

参考文献2

二级参考文献3

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部