期刊文献+

Thick free-standing electrode based on carbon-carbon nitride microspheres with large mesopores for high-energy-density lithium-sulfur batteries 被引量:2

下载PDF
导出
摘要 The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs.
出处 《Carbon Energy》 CAS 2021年第3期410-423,共14页 碳能源(英文)
基金 the R&D Convergence Program of NST(National Research Council of Science&Technology)of the Republic of Korea(CAP-15-02-KBSI) a National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(No.2019R1C1C1007745) a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Ministry of Science,ICT&Future Planning)(No.2019R1A4A2001527).
  • 相关文献

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部