期刊文献+

Feckly McCoy环

Feckly McCoy Rings
原文传递
导出
摘要 本文引进一类新环——feckly McCoy环.一个环R称为右feckly McCoy环,如果商环R/J(R)是右McCoy环.我们讨论右feckly McCoy环与相关环之间的关系,研究它们的Ore扩张,给出J-零化子的一些应用.证明了:(1)如果R是一个弱2-素δ-相容环,J(R)是诣零的,其中δ是环R的一个导子使得δ(J(R))⊆J(R),则R是右feckly McCoy的当且仅当R[x;δ]是右feckly McCoy的;(2)如果R是一个右feckly McCoy环,且J(R[x])=J(R)[x],则R是右J-zip的当且仅当R[x]是右J-zip的. This article introduces a new class of rings called right feckly McCoy rings.A ring R is called right feckly McCoy if R/J(R)is a right McCoy ring.We discuss the relationship between right feckly McCoy rings and related rings,investigate their Ore extensions and give some applications to J-annihilators.It is proved that(1)if R is a weakly 2-primalδ-compatible ring and J(R)is nil,whereδis a derivation of R such thatδ(J(R))⊆J(R),then R is right feckly McCoy if and only if R[x;δ]is right feckly McCoy;(2)if J(R[x])=J(R)[x],where R is a right feckly McCoy ring,then R is right J-zip if and only if R[x]is right J-zip.
作者 王尧 姜美美 任艳丽 WANG Yao;JIANG Meimei;REN Yanli(School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing,Jiangsu,210044,P.R.China;College of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing,Jiangsu,210013,P.R.China;School of Information Engineering,Nanjing Xiaozhuang University,Nanjing,Jiangsu,211171,P.R.China)
出处 《数学进展》 CSCD 北大核心 2021年第5期699-708,共10页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11571165) NSF of of Jiangsu Province(No.BK20181406)。
关键词 feckly McCoy环 ORE扩张 J-零化子 feckly McCoy ring Ore extension J-annihilator
  • 相关文献

参考文献3

二级参考文献22

  • 1Cohn, P.M., Reversible rings, Bull. London Math. Soc., 1999, 31(6): 641-648.
  • 2Krempa, J., Some examples of reduced rings, Algebra Colloq., 1996,3: 289-300.
  • 3Hong C.Y., Kim, N.K., Kwak, T.K., Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra, 2000, 15(3): 215-226.
  • 4Hashemi, E. and Moussavi, A., Polynomial extensions of quasi-Baer rings, Acta. Math. Hungar, 2000, 151: 215-226.
  • 5Nielsen, P.P., Semicommutativity and the McCoy condition, J. Algebra, 2006, 298: 134-141.
  • 6McCoy, N.H., Remarks on divisors of zero, Amer. Math. Monthly, 1942, 49: 286-295.
  • 7Weiner, L., Concerning a theorem of McCoy, Amer. Math. Monthly, 1952, 59(5): 1281-1294.
  • 8Lei Z., Chen J. and Ying, Z., A question on McCoy rings, Bull Austrial . Math. Soc., 2007, 76: 137-147.
  • 9Hashemi, E., On δ-quasi Armendariz modules, Bulletin of Iranian Mathematical Society, 2007, 33(2): 15-26.
  • 10Lam, T.Y., Leory, A., Matczuk, J., Primeness, semiprimeness and the prime radical of Ore extensions, Comm. Algebra, 1997, 25(8): 2459-2516.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部