期刊文献+

非光滑约束优化带束集修正的两阶段束方法 被引量:1

A Two-phase Bundle Method with Bundle Modification for Nonsmooth Constrained Optimization
原文传递
导出
摘要 结合两阶段束方法思想,提出新的束集修正策略,得到一个求解非光滑约束优化问题的两阶段束方法.当稳定中心更新时,通过束集修正策略,约束函数值更小的新点将替代束集中的一部分不可行点,目标函数值更小的新点将替代一部分可行点,旨在得到质量更优的束集.算法能接受不可行初始点,在阶段一搜索一个可行迭代点,一旦产生可行迭代点,进入阶段二执行可行方向算法.算法具备全局收敛性,且初步的数值结果表明算法是有效的. In this paper,a new bundle modification strategy is proposed based on the idea of two-phase bundle method,and then a two-phase bundle method for nonsmooth constrained optimization problem is presented.When the stability center is updated,by applying the bundle strategy,some unfeasible points in the bundle will be substituted by new ones which have lower constraint values,and some feasible points will be substituted by new ones which have lower objective values,aiming at getting a better bundle.The method can accept infeasible initial points.When a feasible iterate is generated in phase I,the method will proceed as a feasible direction algorithm in phase II.The method possesses global convergence and preliminary computational results show that the algorithm is effective.
作者 石露 唐春明 简金宝 SHI Lu;TANG Chunming;JIAN Jinbao(Xingjian College of Science and Liberal Arts,Guangxi University,Nanning,Guangxi,530005,P.R.China;College of Mathematics and Information Science,Guangxi University,Nanning,Guangxi,530004,P.R.China;College of Mathematics and Physics,Guangxi University of Nationalities,Nanning,Guangxi,530007,P.R.China)
出处 《数学进展》 CSCD 北大核心 2021年第5期742-758,共17页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11761013) 广西大学行健文理学院科研项目(No.Y2018ZKK03) 广西高校中青年教师科研基础能力提升项目(No.2020KY54013) 广西自然科学基金(No.2018GXNSFFA281007)。
关键词 非光滑约束优化 两阶段束方法 束集修正 全局收敛性 nonsmooth constrained optimization two-phase bundle method bundle modification global convergence
  • 相关文献

参考文献2

二级参考文献40

  • 1Michelot C, Plastria F. An extended multifacility minimax location problem revisited. Ann Oper Res, 2002, 111: 167-179.
  • 2Wang S Y, Yamamoto Y, Yu M. A minimax rule for portfolio selection in frictional markets. Math Methods Oper Res, 2003, 57:141-155.
  • 3Chernousko F L. Minimax control for a class of linear systems subject to disturbances. J Optim Theory Appl, 2005, 127:535-548.
  • 4Baums A. Minimax method in optimizing energy consumption in real-time embedded systems. Aurora Control Comput Sci, 2009, 43:57-62.
  • 5Li Y P, Huang G H. Inexact minimax regret integer programming for long-term planning of municipal solid waste management -- Part A: Methodology development. Environ Eng Sci, 2009, 26:209-218.
  • 6Watson G A. The minimax solution of an overdetermined system of nonlinear equations. IMA J Appl Math, 1979, 23: 167-180.
  • 7Overton M L. Algorithms for nonlinear fl and g fitting. In: Nonlinear Optimization. London: Academic Press, 1982, 213-221.
  • 8Li X S, Fang S C. On the entropic regularization method for solving min-max problems with applications. Math Methods Oper Res, 1997, 46:119-130.
  • 9Xu S. Smoothing method for minimax problems. Comput Optim Appl, 2001, 20:267-279.
  • 10Di Pillo G, Grippo L, Lucidi S. A smooth method for the finite minimax problem. Math Program, 1993, 60:187 -214.

共引文献6

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部