期刊文献+

哈密尔顿二次迭代线图的边度条件

Edge Degree Conditions for Hamiltonian 2-iterated Line Graphs
原文传递
导出
摘要 图G=(V(G),E(G))的线图L(G)是指以G的边集E(G)为顶点集且L(G)的2个顶点相邻当且仅当它们在G中有公共顶点.定义G的最小边度σ_(2)(G)=min{dG(u)+dG(v):uv∈E(G)}.对于连通图G,给出σ_(2)(G)的精确界,使得L(L(G))是哈密尔顿的(即存在支撑圈).对于每一条割边都是悬挂边的连通图H,给出σ_(2)(H)的精确界,使得L(L(H))是哈密尔顿的. The line graph L(G)of G=(V(G),E(G))has E(G)as its vertex set,and two vertices are adjacent in L(G)if and only if the corresponding edges share a common end vertex in G.Let σ_(2)(G)=min{dG(u)+dG(v):uv∈E(G)}.A sharp bound of σ_(2)(G)for a connected graph G such that L(L(G))is Hamiltonian(i.e.,has a spanning cycle)is given.A sharp bound of σ_(2)(H)for a connected graph H in which every cut edge is a pendent edge such that L(L(H))is Hamiltonian is also given.
作者 刘泽萌 熊黎明 熊玮 LIU Zemeng;XIONG Liming;XIONG Wei(School of Mathematics and Statistics,Beijing Institute of Technology,Beijing,100081,P.R.China;College of Mathematics and System Science,Xinjiang University,Urumqi,Xinjiang,830046,P.R.China)
出处 《数学进展》 CSCD 北大核心 2021年第5期793-799,共7页 Advances in Mathematics(China)
基金 Supported by NSFC(Nos.11871099,11671037,12001465)。
关键词 迭代线图 哈密尔顿指数 边度条件 iterated line graphs Hamiltonian index edge degree condition
  • 相关文献

参考文献1

二级参考文献29

  • 1Bondy J A, Murty U S R. Graph theory with applications [ M ]. New York : American Elsevier, 1976.
  • 2Clark L H, Wormald N C. Hamiltonian-like indices of graphs [ J]. Ars Combinatoria, 1983,15 : 131-148.
  • 3Harary F,Nash-Williams C St J A. On Eulerian and Hamiltonian graphs and line graphs [ J ]. Canad Math Bull, 1965,8(6) :701-709.
  • 4Chartrand G, Wall C E. On the Hamihonian index of a graph [ J]. Studia Sci Math Hungar, 1973,8:43-48.
  • 5Xiong Liming, Liu Zhanhong. Hamihonian iterated line graphs [ J ]. Discrete Math ,2002,256 (1/2) :407-422.
  • 6Sarazin M L. A simple upper bound for the Hamihonian index of a graph [ J ]. Discrete Math, 1994,134 ( 1/2/5 ) : 85-91.
  • 7Xiong Liming, Broersma H J, Li Xueliang, et al. The Hamiltonian index of a graph and its branch-bonds [ J ]. Discrete Math ,2004,285 ( 1/2/3 ) :279-288.
  • 8Yi Hong, Lin Jianliang, Tao Zhisui, et al. The Hamihonian index of graphs [ J ]. Discrete Math, 2009,309 ( 1 ) : 288- 292.
  • 9Xiong Liming, Yan Huiya. On the supereulerian index of a graph [ J ]. Journal of Beijing Institute of Technology, 2005,14( 5 ) :453-457.
  • 10Gould R, Hynds E. A note on cycles in 2-factors of line graphs [ J]. Bull ICA 1999,26:4648.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部