期刊文献+

基于K-means算法的堆叠砝码检定顺序调度规划方法 被引量:1

Verification Sequence Scheduling Planning Method for Stacked Weight Based on K-means Algorithm
下载PDF
导出
摘要 基于K-means算法提出了用于砝码无人化检定的检定顺序调度规划方案。通过K-means算法、曼哈顿距离模型等技术,实现堆叠砝码提手检定顺序调度规划,形成专用的堆叠砝码检定顺序调度方法。实验模拟搭建不同状态3×3×2堆叠砝码验证调度算法效果,结果表明:基于K-means算法的堆叠砝码检定顺序调度规划方法可有效提高砝码检定效率,算法计算时间小于50 ms,平均单个砝码检定时间减少2.7 s。 Based on K-means algorithm,a verification sequence scheduling planning scheme for unmanned verification of weights is proposed.Through K-means algorithm,Manhattan distance model and other technologies,verification sequence scheduling planning for the stacked weight handle is realized,and a special verification sequence scheduling method for stacked weight is formed.The experiment simulates the construction of 3×3×2 stacked weights in different states to verify the effect of the scheduling algorithm.The results show that verification sequence scheduling planning method for stacked weight based on the K-means algorithm can effectively improve the weight verification efficiency,and the calculation time of the algorithm is less than 50 ms,and the average verification time of a single weight is reduced by 2.7 s.
作者 马健 赵迪 李杰业 刘桂雄 MA Jian;ZHAO Di;LI Jieye;LIU Guixiong(Guangzhou Institute of Measurement and Testing Technology,Guangzhou 510030,China;School of Mechanical&Automotive Engineering,South China University of Technology,Guangzhou 510641,China)
出处 《现代信息科技》 2021年第10期11-14,共4页 Modern Information Technology
基金 国家市场监督管理总局科技计划项目(2019MK086)。
关键词 千克组砝码 K-MEANS聚类 曼哈顿距离模型 调度规划 weight in kilogram group K-means clustering Manhattan distance model scheduling planning
  • 相关文献

参考文献15

二级参考文献84

  • 1岳士弘,李平,郭继东,周水庚.A statistical information-based clustering approach in distance space[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2005,6(1):71-78. 被引量:9
  • 2Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666.
  • 3Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2.
  • 4Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310.
  • 5Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962.
  • 6Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248.
  • 7Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285.
  • 8Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965.
  • 9WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9.
  • 10Pena J M,Lozano J A,Larranaga P. An empirical comparison of four initialization methods for the K-means algorithm[J].Pattern Recognition Letters,1999,(20):1027-1040.doi:10.1016/S0167-8655(99)00069-0.

共引文献921

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部