期刊文献+

Joint Bandwidth Allocation and Path Selection in WANs with Path Cardinality Constraints 被引量:1

原文传递
导出
摘要 In this paper,we study the joint bandwidth allocation and path selection problem,which is an extension of the well-known network utility maximization(NUM)problem,via solving a multi-objective minimization problem under path cardinality constraints.Specifically,such a problem formulation captures various types of objectives including proportional fairness,average delay,as well as load balancing.In addition,in order to handle the"unsplittable flows",path cardinality constraints are added,making the resulting optimization problem quite challenging to solve due to intrinsic nonsmoothness and nonconvexity.Almost all existing works deal with such a problem using relaxation techniques to transform it into a convex optimization problem.However,we provide a novel solution framework based on the linearized alternating direction method of multipliers(LADMM)to split the original problem with coupling terms into several subproblems.We then derive that these subproblems,albeit nonconvex nonsmooth,are actually simple to solve and easy to implement,which can be of independent interest.Under some mild assumptions,we prove that any limiting point of the generated sequence of the proposed algorithm is a stationary point.Numerical simulations are performed to demonstrate the advantages of our proposed algorithm compared with various baselines.
出处 《Journal of Communications and Information Networks》 CSCD 2021年第3期237-250,共14页 通信与信息网络学报(英文)
基金 supported by the National Natural Science Foundation of China under Grant 11831002。
  • 相关文献

参考文献1

二级参考文献34

  • 1Berry M W,Browne M,Langville A N,Pauca V P Plemmons R J. Algorithms andapplications for approximate nonnegative matrix factorization[J].Computational Statistics and Data Analysis,2007,(01):155-173.
  • 2Bertsekas D P,Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M].Upper Saddle River:Prentice-Hall,Inc,1989.
  • 3Biswas P,Lian T C,Wang T C,Ye Y. Semidefinite programming based algorithms for sensor network (l)ocalization[J].ACM Transactions on Sensor Networks,2006,(02):188-220.
  • 4Cai J F,Candes E J,Shen Z. A singular value thresholding algorithm for matrix completion export[J].SIAM Journal on Optimization,2010.1956-1982.
  • 5Candès E J,Li X,Ma Y,Wright J. Robust principal component analysis[J].Journal of the ACM,2011,(03):11.
  • 6Candès E J,Recht B. Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,(06):717-772.doi:10.1007/s10208-009-9045-5.
  • 7Candès E J,Tao T. The power of convex relaxation:Near-optimal matrix completion[J].IEEE Transactions on Information theory,2010,(05):2053-2080.
  • 8Cichocki A,Morup M,Smaragdis P,Wang W,Zdunek R. Advances in Nonnegative Matrix and Tensor Factorization[A].New York:Hindawi Publishing Corporation,2008.
  • 9Cichocki A,Zdunek R,Phan A H,Amari S. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multiway Data Analysis and Blind Source Separation[M].Hoboken:John Wiley & Sons,Ltd,2009.
  • 10Fazel M. Matrix Rank Minimization with Applications[D].Stanford University,2002.

共引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部