摘要
Conductive electrodes are major components of flexible optoelectronic devices.However,existing materials are either very conductive but brittle(e.g.,ITO[indium tin-oxide]),or non-brittle but less conductive,with an environment-dependent conductivity(e.g.,PEDOT:PSS[poly-(3,4 ethylenedioxythiophene):poly(styrene sulfonic acid)]).Here,we propose a new design that simultaneously takes advantage of both the high conductivity of ITO and the high flexibility of PEDOT:PSS.In our design,a PEDOT:PSS interface is inserted between the film substrate and the ITO layer,creating a hybrid layered structure that retains both its high conductivity and high stability,when the film is deformed.The rational behind the creation of this structure,is that PEDOT:PSS,used as an interface between the locally delaminated ITO layer and the substrate,substantially reduces the detrimental effects of cracks on the electrode’s conductivity.These results open the path for a new generation of transparent electrodes in advanced flexible devices.
基金
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology(KAUST),under award number BAS/1/1315-01-01.