期刊文献+

Numerical investigation of flow unsteadiness and heat transfer on suction surface of rotating airfoils within a gas turbine cascade

原文传递
导出
摘要 The effects of the periodical turbulence and pressure fluctuation on suction surface heat transfer over airfoils of a row of rotor blades with a certain type have been investigated numerically in this paper.The calculation is perfomed using v^(2)-f model with the numerical results of pressure fluctuation and heat transfer performance over 4 sample points being analyzed and compared with existing experimental data.It shows that the static pressure change has significant impact on heat transfer performance of the fore suction surface,especially in the active region of the shock waves formed from the trailing edge of upstream nuzzles.While,for the rear suction surface,the flow turbulence contributes more to the heat transfer change over the surface,due to the reduced pressure oscillation through this region.Phase shifted phenomenon across the surface can be observed for both pressure and heat transfer parameters,which should be a result of turbulence migration and wake passing across the airfoil.
出处 《Propulsion and Power Research》 SCIE 2017年第2期91-100,共10页 推进与动力(英文)
基金 The authors gratefully acknow ledge the financial support from China Scholarship Council(CSC)and Siemens Industrial Turbomachinery Ltd.(UK)for Liang Guo's Ph.D.research at the University of Nottingham(RIS 101798).
  • 相关文献

参考文献1

二级参考文献4

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部