期刊文献+

Light-weighting in aerospace component and system design 被引量:9

原文传递
导出
摘要 Light-weighting involves the use of advanced materials and engineering methods to enable structural elements to deliver the same,or enhanced,technical performance while using less material.The concept has been extensively explored and utilised in many industries from automotive applications to fashion and packaging and offers significant potential in the aviation sector.Typical implementations of light-weighting have involved use of high performance materials such as composites and optimisation of structures using computational aided engineering approaches with production enabled by advanced manufacturing methods such as additive manufacture,foam metals and hot forming.This paper reviews the principal approaches used in light-weighting,along with the scope for application of light-weighting in aviation applications from power-plants to airframe components.A particular area identified as warranting attention and amenable to the use of lightweighting approaches is the design of solar powered aircraft wings.The high aspect ratio typically used for these can be associated with insufficient stiffness,giving rise to non-linear deformation,aileron reversal,flutter and rigid-elastic coupling.Additional applications considered include ultralight aviation components and sub-systems,UAVs,and rockets.Advanced optimisation approaches can be applied to optimise the layout of structural elements,as well as geometrical parameters in order to maximise structural stiffness,minimise mass and enable incorporation of energy storage features.The use of additive manufacturing technologies,some capable of producing composite or multi-material components is an enabler for light-weighting,as features formally associated with one principal function can be designed to fulfil multiple functionalities。
出处 《Propulsion and Power Research》 SCIE 2018年第2期103-119,共17页 推进与动力(英文)
  • 相关文献

参考文献1

共引文献3

同被引文献68

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部