期刊文献+

石墨相氮化碳量子点敏化Bi_(2)MoO_(6)复合光催化剂的制备及性能研究

Prepartion and Photocatalytic Properties of Bi_(2)MoO_(6) Composite Modified by Graphite Phase Carbon Nitride Quantum Dots
下载PDF
导出
摘要 近年来拥有奥里维里斯层状结构的钼酸铋(Bi_(2)MoO_(6))作为高效可见光响应的光催化剂,在净化环境和光催化产氢等领域表现出极为可观的前景,然而光生电子-空穴复合率高等缺陷严重影响了其光催化活性。本文将从两个方面对Bi_(2)MoO_(6)的性能进行优化:一方面通过水热法合成Bi_(2)MoO_(6)纳米片;另一方面,通过与石墨相氮化碳量子点(g-CNQDs)构建异质结,促进光生电子-空穴的分离以达到提高光催化活性的目的。结果表明,当g-CNQDs的投料比为15%时,Bi_(2)MoO_(6)/g-CNQDs降解罗丹明B时表现出最高光催化活性,是纯Bi_(2)MoO_(6)的3.89倍。 In recent years,bismuth molybdate(Bi 2MoO 6)with Oliviers layered structure,as a highly efficient visible light responsive photocatalyst,has shown great prospects in the fields of environmental purification and photocatalytic hydrogen production.However,the high recombination rate of photogenerated electron hole seriously affects its photocatalytic activity.This article will start from two aspects to optimize the performance of Bi 2MoO 6:on the one hand,Bi 2MoO 6 nanosheets were synthesized by hydrothermal method;on the other hand,Bi 2MoO 6/g-CNQDs heterojunction was constructed with graphite phase carbon nitride quantum dots(g-CNQDs)to promote the separation of photogenerated electrons and holes in order to improve the photocatalytic activity.The results indicated that when the feed ratio of g-CNQDs was 15%,Bi 2MoO 6/g-CNQDs showed the highest photocatalytic activity in the degradation of RhB,which was 3.89 times that of pure Bi 2MoO 6.
作者 王庆 张晓辉 姜怀远 刘锐珍 李萍 程健 Wang Qing;Zhang Xiaohui;Jiang Huaiyuan;Liu Ruizhen;Li Ping;Cheng Jian(Key Laboratory for Green Chemical Process of Ministry of Education,The Hubei Key Laboratory of New-Type Reactors and Green Chemical Technology,School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《山东化工》 CAS 2021年第17期42-45,共4页 Shandong Chemical Industry
基金 国家自然科学基金项目(51502210) 催化材料科学湖北省暨国家民委-教育部共建重点实验室开放基金项目(CHCL14003) 武汉工程大学第十一届研究生教育创新基金(CX2019012)。
关键词 钼酸铋 石墨相氮化碳量子点 光催化 Bismuth molybdate graphite phase carbon nitride quantum dots photocatalysis
  • 相关文献

参考文献7

二级参考文献95

  • 1蒋小红,喻文熙,曹达文,周恭明.改性硅藻土处理城市污水技术的可行性研究[J].环境科学与技术,2007,30(3):76-78. 被引量:32
  • 2Mao, Y. B.; Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217. doi: 10.1021/ja0607483.
  • 3Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/ 238037a0.
  • 4Lu, S. Y.; Wu, D.; Wang, Q. L.; Yah, J. H.; Buekens, A. G.; Cen, K. F. Chemosphere 2011, 82, 1215. doi: 10.1016/j. chernosphere.2010.12.034.
  • 5Huang, C. X.; Zhu, K. R.; Qi, M. Y.; Zhuang, Y. L.; Cheng, C. J. Phys. Chem. Solids 2012, 73, 757.
  • 6Hasanpour, A.; Niyaifar, M.; Mohammadpour, H.; Amighian, J J. Phys. Chem. Solids 2012, 73, 1066. doi: 10.1016/j. jpcs.2012.04.003.
  • 7Lin, Y.; Geng, Z. G.; Cai, H. B.; Ma, L.; Chen, J.; Zeng, J.; Pan, N.; Wang, X. Q. Eur. J. Inorg. Chem. 2012, 28, 4439.
  • 8Dai, Y. Q.; Jing, Y.; Zeng, 3.; Qi, Q.; Wang, C. L.; Goldfeld, D.; Xu, C. H.; Zheng, Y. P.; Sun, Y. M..l.. Mater Chem. 2011, 21, 18174. doi: 10.1039/cljm13641k.
  • 9Yan, Y.; Sun, S. F.; Song, Y.; Yah, X.; Guan, W. S.; Liu, X. L.; Shi, W. D. J. Hazard. Mater. 2013, 250-251, 106.
  • 10Wang, X. K.; Li, G. C.; Ding, J.; Peng, H. R.; Chen, K. Z. Mater. Res. Bull. 2012, 47, 3814. doi: 10.1016/j.materresbull. 2012.04.082.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部