期刊文献+

基于FastICA的遗传径向基神经网络轴承故障诊断研究 被引量:4

Research on Bearing Fault Diagnosis of Genetic Radial Basis Function Neural Network Based on FastICA
下载PDF
导出
摘要 针对电机轴承故障诊断效率低和诊断结果准确率不高的问题,提出一种基于FastICA的遗传径向基神经网络的优化算法。利用独立分量分析算法,将信号分离成多个独立的信号源;根据独立信号源构建独立特征向量;将分离所得的独立信号源作为样本,输入到遗传算法优化后的径向基神经网络中进行故障识别,并与其他分类算法比较。实验结果表明,对于电机轴承多信号的故障诊断,该算法具有更好的故障诊断能力。 According to the low efficiency and low accuracy of motor bearings fault diagnosis,a genetic radial basis function neural network optimization algorithm based on FastICA was proposed.The signal was divided into multiple independent signal sources by using independent component analysis algorithm;the independent eigenvectors were constructed by using the independent signal source;the separated independent signal source was taken as a sample and input to the radial neural network optimized by genetic algorithm for fault identification,and compared with other classification algorithms.The experimental results show that this algorithm has better fault diagnosis ability for multi-signal fault diagnosis of motor bearings.
作者 马金英 孟良 许同乐 孟祥川 MA Jinying;MENG Liang;XU Tongle;MENG Xiangchuan(School of Agricultural Engineering and Food Science,Shandong University of Technology,Zibo Shandong 255049,China;School of Mechanical Engineering,Shandong University of Technology,Zibo Shandong 255049,China)
出处 《机床与液压》 北大核心 2021年第18期188-192,共5页 Machine Tool & Hydraulics
基金 山东省自然科学基金项目(ZR2016EEM20)。
关键词 径向神经网络 快速独立分量分析 遗传算法 故障诊断 Radial neural network Fast independent component analysis Genetic algorithm Fault diagnosis
  • 相关文献

参考文献6

二级参考文献42

  • 1王毅,牛奕龙,陈海洋.独立分量分析的基本问题与研究进展[J].计算机工程与应用,2005,41(27):38-42. 被引量:19
  • 2Campanella S, Vigne D D, Komreich C. Greater sensitivity of the P300 component to bimodal stimulation in an event- related potentials oddball task[ J]. Clinical Neurophysiology, 2012,123 (5) :937 - 946.
  • 3Wang S G,James C J. Feature enhancement of P300 based brain computer interface through spatially-constrained ICA [C //2012 /EEE /nternational Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems. Tianjin,2012 : 167 - 170.
  • 4D'Avanzo C, Schiff S, Amodio P, et al. A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 vadabilityE J]. Journal of Neuroscience Methods,2011,198( 1 ) :114 - 124.
  • 5Rakotomamonjy A, Guigue V. BCI competition IU:dataset lI- ensemble of SVMs for BCI P300 speller [ J ]. IEEE Transactions on Biomedical Engineering, 2008, 55 ( 3 ) : i147 - 1154.
  • 6Hyvarinen A, Oja E. Independent component analysis: algo-rithms and applications E J ]. Neural Networks, 2000, 13 ( 4/ 5) :411 -430.
  • 7LuW, Rajapakse J C. Approach and applications of constrained ICA[ J. IEEE Transactions on Neural Networks, 2005,16( 1 ) :203 - 212.
  • 8BlankertzB, Mtiller K R, Curio G, et al. The BCI competition 2003 :progress and perspectives in detection and discrimination of EEG single trials E J ]. IEEE Transactions on Biomedical Engineering,2004,51 (6) : 1044 - 1051.
  • 9Blankertz B, Muller K R, Krusienski D J, et al. The BCI competition III: validating alternative approaches to actual BCI problemsE J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14 (2) : 153 - 159.
  • 10JONATHAN S S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Inteface, 2005,2 (5) : 444-450.

共引文献40

同被引文献49

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部