期刊文献+

基于行为足迹的多模态融合身份认证 被引量:5

Identity Authentication of Multi-Modal Fusion Based on Behavioral Footprint
下载PDF
导出
摘要 针对单模态身份认证方法存在特征单一容易被伪造和攻破的问题,提出基于用户行为足迹的多模态特征融合隐式身份认证方法。在移动设备中采集用户使用设备时的触摸压力、触摸轨迹、加速度等传感器数据,利用特征选择技术提取触摸屏交互、移动模式、物理位置等特征并对其进行训练与融合,最终通过多模态特征融合模型实现用户身份认证。实验结果表明,该方法采用的特征级融合和决策级融合方式均获得了98%以上的认证准确率,相比单模态身份认证方法更难以被伪造和攻破,且认证准确率更高、稳定性更强。 Among identity verification methods,the single-mode verification methods rely on single features,and are vulnerable to forged authentication and attacks.To solve the problem,an implicit authentication method of multi-modal feature fusion based on user footprints is proposed.The data of user behavior when using the mobile devices,including the touch pressure,the track of finger movement,and the acceleration of user movement,is collected from sensors.Then the feature selection technique is used to extract the features of touch screen interactions,movement mode,and physical location.The extracted features are subsequently trained and fused.On this basis,the multi-modal feature fusion model is used to realize user identity authentication.Experimental results show that the proposed method achieves an authentication accuracy of over 98%in both the feature-level fusion mode and the strategy-level fusion mode.It is less vulnerable to forged authentication and attacks,and displays higher authentication accuracy and stability.
作者 林梦琪 张晓梅 LIN Mengqi;ZHANG Xiaomei(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第10期116-124,共9页 Computer Engineering
基金 国家自然科学基金(61802252)。
关键词 生物行为 多模态特征 隐式认证 数据融合 行为足迹 biological behavior multi-modal feature implicit authentication data fusion behavioral footprint
  • 相关文献

参考文献4

二级参考文献18

  • 1Dohono DL.De-noising by soft-thresholding[J].IEEE Trans Inform Theory,1995,41(5):613-627.
  • 2Mallat S.and Hwang L,Singularity detection and processing with wavelet[J].IEEE Trans on Information Theory,1993,38(2):617-643.
  • 3Witten I,Frank E. Data mining: Practical machinelearning tools and techniques[M]. San Francisco: MorganKaufmann,2005: 39-52.
  • 4Bishop C. Pattern recognition and machine leaming[M].New York: Springer, 2006: 1-58.
  • 5Russell S, Norvig P. Artificial intelligence: A modemapproach[M]. New Jersey: Prentice Hall, 2010: 31-44.
  • 6Bellman R. Adaptive control processes: A guided tour[M].Princeton: Princeton University Press, 1966: 152-175.
  • 7Donald E. The art of computer programming [J]. Sortingand Searching, 1999, 3: 426-458.
  • 8Goldberg D. Genetic algorithms in search, optimizationand machine leaming[M]. New York: Addison-wesley,1989: 41.
  • 9Jolliffe I. Principal component analysis[M]. New York:Springer-Verlag, 1986: 10-28.
  • 10Kwon O, Lee T. Phoneme recognition using ICA-basedfeature extraction and transformation[J]. Signal Processing,2004, 84(6): 1005-1019.

共引文献127

同被引文献49

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部