期刊文献+

Low-temperature oxidation behavior and mechanism of semi-dry desulfurization ash from iron ore sintering flue gas 被引量:1

原文传递
导出
摘要 The low-temperature wet oxidation behavior of semi-dry desulfurization ash from iron ore sintering flue gas in ammonium citrate solution was investigated for efficiently utilizing the low-quality desulfurization ash. The effects of the ammonium citrate concentration, oxidation temperature, solid/liquid ratio, and oxidation time on the wet oxidation behavior of desulfurization ash were studied. Simultaneously, the oxidation mechanism of desulfurization ash was revealed by means of X-ray diffraction, Zeta electric resistance, and X-ray photoelectron spectroscopy (XPS) analysis. Under the optimal conditions with ammonium citrate, the oxidation ratio of CaSO_(3) was up to the maximum value (98.49%), while that of CaSO_(3) was only 8.92% without ammonium citrate. Zeta electric resistance and XPS results indicate that the dissolution process of CaSO_(3) could be significantly promoted by complexation derived from the ammonium citrate hydrolysis. As a result, the oxidation process of CaSO_(3) was transformed from particle oxidation to SO_(3)^(2−) ion oxidation, realizing the rapid transformation of desulfurization ash from CaSO_(3) to CaSO_(4) at low temperature. It provides a reference for the application of semi-dry desulfurization ash and contributes to sustainable management for semi-dry desulfurization ash.
出处 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第9期1075-1081,共7页
基金 the National Natural Science Foundation of China(NSFC)(Grant Nos.51704004 and 51674002) the Natural Science Foundation of Anhui Province(Grant No.1808085QE133).
  • 相关文献

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部