摘要
采用某燃煤电厂1 000 MW机组实际运行数据,通过机理分析SCR出口NOX浓度与脱硝效率的各主要影响因素,使用门控循环单元神经网络建立SCR出口NOX浓度和脱硝效率预测模型。预测结果表明建立的SCR出口NOX浓度和脱硝效率预测模型的精度高于传统的RBF、LSSVM、RNN和LSTM模型,分别达到99.52%和99.63%。
The historic operating data of a 1 000 MW unit coal-fired power plant is used to analyze the main factors that influence the SCR outlet NOX concentration and denitration efficiency. A GRU neural network is used to predict the SCR denitrification outlet NOX concentration and denitration efficiency. The prediction results show that the GRU-NN model has higher accuracy than the conventional models such as the RBF, LSSVM, RNN and LSTM models. The predicted SCR denitration outlet NOX concentration and denitration efficiency are as high as 99.52% and 99.63%, respectively.
作者
倪煜
李德波
陶叶
NI Yu;LI De-bo;TAO Ye(China Power Engineering Consulting Group Co.,Ltd.,Beijing,100120,China;China Southern Grid Power Technology Co.,Ltd.,Guangzhou,510080,China;China Electric Power Planning&Engineering Institute,Beijing,100120,China)
出处
《电力勘测设计》
2021年第9期24-29,共6页
Electric Power Survey & Design
关键词
燃煤电厂
NOX浓度预测
门控循环单元神经网络
脱硝效率预测
coal-fired power plant
NOX concentration prediction
gated recurrent Unit neural network
denitration efficiency prediction