摘要
针对现有自然语言因果关系抽取模型的低准确性和自由参数过多等问题,提出高效的面向知识通道和面向数据通道相结合的混合卷积神经网络(Mixed Convolution Neural Network,MCNN)方法。面向知识通道结合词汇知识库中因果关系的语言知识,自动生成的卷积过滤器以捕获因果关系的重要语言线索。实验表明与SingleCNN和MultiCNN相比,该方法在因果关系提取方面效果更优。
To solve the problem of low accuracy and excessive free parameters of existing natural language causality extraction models,an efficient mixed convolution neural network(MCNN)is proposed,which combines knowledge-oriented channel with data-oriented channel.Knowledge-oriented channel was combined with the language knowledge of causality in the lexical knowledge base,and the convolution filter was automatically generated to capture the important language clues of causality.The experimental results show that compared with SingleCNN and MultiCNN,this method has better effect than other two traditional CNN models on causal relationship extraction.
作者
兰飞
张宇
Lan Fei;Zhang Yu(Chongqing College of Electronic Engineering,Chongqing 401331,China;Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China)
出处
《计算机应用与软件》
北大核心
2021年第10期184-188,266,共6页
Computer Applications and Software
基金
重庆市教育委员会科学技术研究计划青年项目(KJQN201803107)
重庆市科学技术委员会技术创新与应用发展专项面上项目(cstc2019jscx-msxm1279)。
关键词
卷神经网络
面向知识通道
面向数据通道
自然语言处理
因果关系抽取
Convolutional neural network
Knowledge-oriented channel
Data-oriented channel
Natural
language processing
Causal relationship extraction