期刊文献+

基于曲线距离分析的嵌入式增强聚类算法

ENHANCED CLUSTERING EMBEDDED BASED ON CURVILINEAR DISTANCE ANALYSIS
下载PDF
导出
摘要 针对传统数据分析方法对高维数据进行聚类分析时存在的操作过程繁琐及准确率低等缺陷,提出基于曲线距离分析的嵌入式增强聚类算法(ECE-CDA)。计算高维空间中数据点之间的成对曲线距离并由聚类引导将其映射到低维空间,构造权重函数保持局部拓扑结构不变性。该算法简化了数据分析过程,同时实现降维和聚类,可作为通用的高精度框架。在12个公共数据集上的实验结果表明,该算法能有效进行数据降维并大幅提高模型的聚类精度。 Owing to the cumbersome operation process and low accuracy of traditional data analysis methods for high-dimensional data,an embedded enhanced clustering algorithm(ECE-CDA)based on curvilinear distance analysis is proposed.ECE-CDA calculated the pairwise curvilinear distance between data points in high-dimensional space,then clustering guide dimensionality reduction projected the pairwise curvilinear distance into the low-dimensional space.In order to maintain the local topology structure,a weight function was constructed.ECE-CDA simplified the process of data analysis and implemented dimensionality reduction and clustering simultaneously,which could be used as a general framework.Extensive experiments have been conducted on 12 public data sets.Experimental results show that clustering and dimensionality reduction processes can be performed simultaneously by ECE-CDA,and it can greatly improve the clustering accuracy.
作者 吴艳萍 王红军 李天瑞 邓萍 Wu Yanping;Wang Hongjun;Li Tianrui;Deng Ping(School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,Sichuan,China)
出处 《计算机应用与软件》 北大核心 2021年第10期321-329,共9页 Computer Applications and Software
关键词 曲线距离分析 降维 聚类 随机梯度下降 Curvilinear distance analysis Dimensionality reduction Clustering Stochasticgradient descent
  • 相关文献

参考文献6

二级参考文献64

  • 1詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 2胡昭华,樊鑫,梁德群,宋耀良.基于双向非线性学习的轨迹跟踪和识别[J].计算机学报,2007,30(8):1389-1397. 被引量:5
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313:504 -507.
  • 4Bengio Y, Paiement J F, Vincent P, Delalleau O. Out-of- sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering//Proceedings of the Advances in Neural Information Processing Systems. Whistler, Canada, 2004:16.
  • 5Silva V D, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction. Neural Information Processing Systems, 2003, 15:705-712.
  • 6Silva V D, Tenenbaum J B. Sparse multidimensional sealing using landmark points. Stanford University, Stanford, CA, USA: Technical Report, 2004.
  • 7Saul L K, Rowels S T. Think globally, fit locally : Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 2003, 4:119-155.
  • 8He X, Niyogi P. Locality preserving projeetions//Proceedings of the Advances in Neural Information Processing Systems. Cambridge, UK, 2003:16.
  • 9Zhang J P, Stan Z L. Adaptive nonlinear auto-associative modeling through manifold learning//Ho T B, Cheung D, Liu H eds. PAKDD. LNAI 3518. Berlin Heidelberg: Springer-Verlag, 2005:599-604.
  • 10Donoho D L, Grimes C E. When does Isomap recover the natural parameterization of families of articulated images? Department of Statistics, Stanford University, Stanford, CA, USA: Technical Report 2002-27, 2002.

共引文献294

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部