摘要
大电流开关柜是电力系统的基础部件。为降低其温升和能耗,在综合考虑开关柜热对流和辐射效应的基础上建立了大电流开关柜热-流耦合模型。并结合响应曲面法,以三相母线垂直间距、偏转角度、入口速度为设计变量,以B相母线表面平均温度为响应值,进行大电流开关柜三因素结构寻优。结果表明,相较于传统工程算法,在综合考虑开关柜对流和辐射效应基础上,建立的开关柜热-流耦合模型计算结果与实验值更为接近。偏转角度对B相母线表面平均温度影响较小,垂直间距和入口平均风速对B相母线温升及能耗影响显著。大电流开关柜最优结构为垂直间距200 mm、偏转角度73.5°、入口平均风速2.24 m/s。与初始实验模型相比,温升降低了5.1%,节能率提高了5.89%。本研究为预测大电流开关柜温升及结构优化提供了重要依据。
Large-current switchgears are important basic components of power system.In order to reduce the temperature rise and energy consumption of the large-current switchgear,the thermal-fluid coupling model is established based on the thermal convection and radiation.Then,three structure factors(vertical spacing,deflection angle and inlet speed of three-phase busbars)are carried out through the response surface methodology(the average surface temperature of B-phase busbar as the response value).The results show that the thermal-fluid coupling model,which is put forward for Large-current switchgear in this paper,is more accurate than traditional engineering algorithm.The deflection angle has little effect on the average surface temperature of B-phase busbar,while vertical spacing and inlet speed have significant impact on the temperature rise and energy consumption of B-phase busbar.The recommended optimal switchgear structure is the vertical spacing of 200 mm,the deflection angle of 73.5°,and the inlet wind speed of 2.24 m/s.Compared with the initial experimental model,the temperature rise is reduced by 5.1%,and the energy saving rate is increased by 5.89%.The research provides an important basis for predicting the temperature rise and structural optimization for large-current switchgear.
作者
陆彪
汤凯
陈德敏
何胜方
王昭
LU Biao;TANG Kai;CHEN Demin;HE Shengfang;WANG Zhao(School of Civil Engineering,Anhui University of Technology,Maanshan,Anhui 243000,China;Ma'anshan Iron and Steel Co.,Ltd.,Ma'anshan,Anhui 243000,China)
出处
《南方电网技术》
CSCD
北大核心
2021年第8期112-119,共8页
Southern Power System Technology
关键词
大电流开关柜
热-流耦合模型
响应面法
结构优化
温升
large-current switchgear
thermal-fluid coupling model
response surface methodology
structural optimization
temperature rise