摘要
首先给出了Hilbert空间上无穷时滞中立型随机偏泛函微分方程适度解的定义,然后利用解析半群的性质,Burkholder-Davis-Gundy不等式和Banach不动点定理证明了该Hilbert空间上无穷时滞中立型随机偏泛函微分方程适度解的存在唯一性,最后举出一个实例说明了所得结果的有效性。
Firstly,the definition of the mild solution to neutral stochastic partial functional differential equations with infinite delay in Hilbert spaces was introduced.Then,by means of the properties of analytic semigroups,Burkholder-Davis-Gundy inequality,and Banach fixed point theorem,the existence and uniqueness of the mild solution to neutral stochastic partial functional differential equations with infinite delay in Hilbert spaces were obtained.Finally,an example was given to illustrate the results.
作者
余国胜
YU Guosheng(School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China)
出处
《江汉大学学报(自然科学版)》
2021年第5期18-23,共6页
Journal of Jianghan University:Natural Science Edition
关键词
无穷时滞
中立型随机偏泛函微分方程
适度解
存在唯一性
infinite delay
neutral stochastic partial functional differential equations
mild solution
existence and uniqueness