期刊文献+

浅析CH-γ方程中解的求法

Probe into the Solution of CH-γEquation
下载PDF
导出
摘要 CH-γ方程是一个非线性的偏微分方程,可以反映流体、光学和声学等体系的运动过程。通过求解CH-γ方程得到各种解析表达式,对揭示各种解之间的关系和尖点问题具有重要的应用价值。本文利用W·Rui提出的采用Jacobi椭圆函数积分对积分分支法进行改进,然后应用于求解CH-γ方程。在不同的参数条件下,结合Jacobi椭圆函数积分,对CH-γ方程进行约化处理,最终获得了CH-γ方程的纽子波解、反纽子波解、周期波解、孤立波解等行波解和一种显示解,为CH-γ方程的实际问题应用提供参考依据。 The CH-γequation is a nonlinear partial differential equation which reflect the motion process of fluid,optics,and acoustic systems.By solving the CH-γequation,various analytical expressions are obtained,it has important application value for revealing the relationship between various solutions and the cusp problem.This paper makes use of the Jacobi elliptic function integration proposed by W.Rui to improve the integration branch method,and then it is applied in the solution of CH-γequation.Under different parameter conditions,integrated with Jacobi elliptic function integration,the CH-γequation is reduced,and finally the new wave solution,inverse new wave solution,periodic wave solution and solitary wave solution of the CH-γequation are obtained.The traveling wave solution and a display solution provide a reference for the practical application of the CH-γequation.
作者 邹灵果 ZOU Lingguo(Xiamen Ocean Vocational College,Xiamen 361009,Fujian)
出处 《攀枝花学院学报》 2021年第5期101-112,共12页 Journal of Panzhihua University
关键词 CH-γ方程 积分分支法 Jacobi椭圆函数积分 精确解 CH-γequation integral bifurcation method Jacobian elliptic function integral exact solution
  • 相关文献

参考文献8

二级参考文献35

  • 1GUO Boling & LIU Zhengrong Institute of Applied Physics and Computational Mathematics, Beijing 100088, China,School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China.Two new types of bounded waves of CH-γ equation[J].Science China Mathematics,2005,48(12):1618-1630. 被引量:12
  • 2CHEN ChunLi~(1+) LI YiShen~2 ZHANG JinE~3 1 Department of Mathematics,Shanghai Jiaotong University,Shanghai 200240,China,2 Department of Mathematics,University of Science and Technology of China,Hefei 230026,China,3 SB and SEF,University of Hong Kong,Pokfulam Road,Hong Kong,China.The multi-soliton solutions of the CH-γ equation[J].Science China Mathematics,2008,51(2):314-320. 被引量:3
  • 3彭彦泽,沈明,王作杰.高阶非线性薛定谔方程的精确解(英文)[J].应用数学,2007,20(3):505-511. 被引量:2
  • 4Camassa R, Holm D D. An integral shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993, 71:1661-1664.
  • 5Chou Kaiseng, Qu Changzheng. Integrable equations arising from motions of plane curves[J]. Physica D, 2002, 162:9-33.
  • 6Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations [J]. Arch Ration Mech Anal, 2009, 192:165-186.
  • 7Constantin A, Molinet L. Orbital stability of solitary waves for a shallow water equation[J]. Physica D, 2001, 157:75-89.
  • 8Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support[J]. Phys Rev E, 1996, 53:1900-1906.
  • 9Fokas A S. The Korteweg-de Vries equation andbeyond[J]. Acta Appl Math, 1995, 39:295-305.
  • 10Gui Guilong, Liu Yue, Olver P J, et al. Wave-breaking and peakons for a modified Camassa-Holm equation[J]. Comm Math Phy, 2013, 319:731-759.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部