期刊文献+

Crystal engineering of porous coordination networks for C3 hydrocarbon separation 被引量:1

原文传递
导出
摘要 C3 hydrocarbons(HCs),especially propylene and propane,are high‐volume products of the chemical industry as they are utilized for the production of fuels,polymers,and chemical commodities.Demand for C3 HCs as chemical building blocks is increasing but obtaining them in sufficient purity(>99.95%)for polymer and chemical processes requires economically and energetically costly methods such as cryogenic distillation.Adsorptive separations using porous coordination networks(PCNs)could offer an energy‐efficient alternative to current technolo-gies for C3 HC purification because of the lower energy footprint of sorbent separations for recycling versus alternatives such as distillation,solvent extraction,and chemical transformation.In this review,we address how the structural modularity of porous PCNs makes them amenable to crystal engineering that in turn enables control over pore size,shape,and chemistry.We detail how control over pore structure has enabled PCN sorbents to offer benchmark performance for C3 separations thanks to several distinct mechanisms,each of which is highlighted.We also discuss the major challenges and opportunities that remain to be addressed before the commercial development of PCNs as advanced sorbents for C3 separation becomes viable.
出处 《SmartMat》 2021年第1期38-55,共18页 智能材料(英文)
基金 Science Foundation Ireland,Grant/Award Numbers:13/RP/B2549,16/IA/4624 H2020 European Research Council,Grant/Award Number:ADG 885695 Irish Research Council,Grant/Award Number:IRCLA/2019/167。
  • 相关文献

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部