摘要
Parallel fibrous scaffolds play a critical role in controlling the morphology of cells to be more natural and biologically inspired.Among popular tissue engineering materials,poly(2-hydroxyethyl methacrylate)(pHEMA)has been widely investigated in conventional forms due to its biocompatibility,low toxicity,and hydrophilicity.However,the swelling of pHEMA in water remains a major concern.To address this issue,randomly oriented and aligned as-spun pHEMA nanofibrous scaffolds were first fabricated at speeds of 300 and 2000 rpm in this study,which were then post-treated using either a thermal or a freeze-drying method.In cell assays,human dermal fibroblasts(HDFs)adhered to the freeze-drying treated substrates at a significantly faster rate,whereas they had a higher cell growth rate on thermally-treated substrates.Results indicated that the structural properties of pHEMA nanofibrous scaffolds and subsequent cellular behaviors were largely dependent on post-treatment methods.Moreover,this study suggests that aligned pHEMA nanofibrous substrates tended to induce regular fibroblast orientation and unidirectionally oriented actin cytoskeletons over random pHEMA nanofibrous substrates.Such information has predictive power and provides insights into promising post-treatment methods for improving the properties of aligned pHEMA scaffolds for numerous tissue engineering applications.
基金
supported by Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),National Natural Science Foundation of China(Grant no.11372205 and 31900964)
Program of Zhejiang Sci-Tech University(Grant no.11110231281803)
Scientific Research Foundation of Zhejiang Sci-Tech University(Grant no.11112932618215)
the Fundamental Research Funds of Zhejiang Sci-Tech University(Grant no.2020Q002).