摘要
基于EC细网格、GRAPES-GFS等多尺度数值模式预报产品及中央台指导报,采用准对称滑动训练期,基于加权线性回归技术,形成智能网格温度预报产品。本文对2019年12月至2020年11月河南省300个利用智能网格的预报考核站进行检验,结果表明:智能网格预报日最高、最低温度准确率均高于EC模式。智能网格温度预报可以有效提升河南省旅游景区气象服务的精细化能力和水平,有较好的应用价值。
Based on the prediction products of the multi-scale numerical models such as the EC fine grid,GRAPESGFS and the guidance prediction products from the Central Meteorological Observatory,this research adopts the quasi symmetric sliding training period,and produces the intelligent grids temperature prediction products based on the weighted linear regression method.This paper tests 300 prediction and assessment stations using intelligent grid in Henan Province from December 2019 to November 2020.The results show that the accuracy of intelligent grids in forecasting daily maximum and minimum temperature is higher than that of EC model.Intelligent grid temperature forecast can effectively improve the refinement ability and level of meteorological services in tourist attractions of Henan Province,which has good operational application value.
作者
魏芳芳
王新伟
栗晗
WEI Fangfang;WANG Xinwei;LI Han(Henan Province Meteorological Service Center,Zhengzhou Henan 450003;Henan Province Meteorological Observatory,Zhengzhou Henan 450003)
出处
《河南科技》
2021年第27期95-97,共3页
Henan Science and Technology
基金
中国气象局公共气象服务中心创新项目(M2020021)
中国气象局河南省农业气象保障与应用技术重点实验室应用技术研究基金(KM202012和KM202121)。
关键词
智能网格
旅游景区
气温
intelligent grids
tourist attractions
temperature