摘要
Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.
通过设计由异质单元组成的人工结构并调节其界面耦合方式,经常能够得到具有全新性质的功能器件.对压电器件来说,其变形响应来自压电晶体的伸长、压缩、剪切模态及其组合,同时取决于结构设计的边界条件.然而,由于受到晶体微观层面镜面对称性对扭转模态的限制,长期以来,在单一的集成压电元器件中实现基本扭转驱动是一个很困难的任务.本工作中,我们设计了一种共烧独石驱动器,能够初次解决这个问题.该原型器件由两组工作在反向人工剪切模态的多层驱动单元组成,它们手性的协同应力耦合将在宽频范围内产生合成的扭转输出.有限元模拟表明通过改变其几何尺寸,扭转位移可以在很大范围调节.横向挠度测试证实了其在电场作用下稳定且相当大的线性输出响应(1 Hz和40 V电压条件下约3.7μm).更重要的是,该设计方法实际上提出了在单一压电陶瓷元件中获得任意模态和驱动状态的一种更广泛的途径.
作者
Jikun Yang
Faqiang Zhang
Yongxiang Li
Zhifu Liu
Shuxiang Dong
杨继昆;张发强;李永祥;刘志甫;董蜀湘(Department of Materials Science and Engineering,College of Engineering,Peking University,Beijing 100871,China;CAS Key Laboratory of Inorganic Functional Materials and Devices,Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China;School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
基金
the National Natural Science Foundation of China(51772005,51132001,and 52032012)
Beijing Key Laboratory for Magnetoelectric Materials and Devices。