摘要
Tomato(Solanum lycopersicum)fruits are typically red at ripening,with high levels of carotenoids and a low content in flavonoids.Considerable work has been done to enrich the spectrum of their healthbeneficial phytochemicals,and interspecific crosses with wild species have successfully led to purple anthocyanin-colored fruits.The Aft(Anthocyanin fruit)tomato accession inherited from Solanum chilense the ability to accumulate anthocyanins in fruit peel through the introgression of loci controlling anthocyanin pigmentation,including four R2R3 MYB transcription factor-encoding genes.Here,we carried out a comparative functional analysis of these transcription factors in wild-type and Aft plants,and tested their ability to take part in the transcriptional complexes that regulate the biosynthetic pathway and their effi-ciency in inducing anthocyanin pigmentation.Significant differences emerged for SlAN2like,both in the expression level and protein functionality,with splicing mutations determining a complete loss of function of the wild-type protein.This transcription factor thus appears to play a key role in the anthocyanin fruit pigmentation.Our data provide new clues to the long-awaited genetic basis of the Aft phenotype and contribute to understand why domesticated tomato fruits display a homogeneous red coloration without the typical purple streaks observed in wild tomato species.