期刊文献+

Highly efficient and genotype-independent barley gene editing based on anther culture 被引量:6

原文传递
导出
摘要 Recalcitrance to tissue culture and genetic transformation is the major bottleneck for gene manipulation in crops.In barley,immature embryos of Golden Promise have typically been used as explants for transformation.However,the genotype dependence of this approach limits the genetic modification of commercial varieties.Here,we developed an anther culture-based system that permits the effective creation of transgenic and gene-edited plants from commercial barley varieties.The protocol was tested in Golden Promise and four Australian varieties,which differed in phenology,callus induction,and green plant regeneration responses.Agrobacterium-mediated transformation was performed on microspore-derived callus to target the HvPDS gene,and T0 albinos with targeted mutations were successfully obtained from commercial varieties.Further editing of three targets was achieved with an average mutation rate of 53%in the five varieties.In 51 analyzed T0 individuals,Cas9 induced a large proportion(69%)of single-base indels and two-base deletions in the target sites,with variable mutation rates among targets and varieties.Both ontarget and off-target activities were detected in T1 progenies.Compared with immature embryo protocols,this genotype-independent platformcan deliver a high editing efficiency and more regenerant plants within a similar time frame.It shows promise for functional genomics and the application of CRISPR technologies for the precise improvement of commercial varieties.
出处 《Plant Communications》 2021年第2期89-101,共13页 植物通讯(英文)
基金 supported by the Western Australian Department of Primary Industries and Regional Development the Western Australian State Agricultural Biotechnology Center,Murdoch University.
  • 相关文献

参考文献8

二级参考文献37

共引文献547

同被引文献80

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部