期刊文献+

后摩尔时代芯片结构材料的热设计与表征

Thermal Design and Characterization of Chip Structure Materials in Post Moore Era
下载PDF
导出
摘要 在半导体工业,摩尔定律预测每过2年芯片上晶体管的数量就增加一倍,芯片运行的速度也会增加一倍。目前,超高的热流密度已成为摩尔定律面临的一个瓶颈。微纳结构利用尺寸效应、界面效应和新的材料构成体系,有可能为半导体工业提供颠覆性的技术解决方案。系统研究尺寸效应、应变场和温度场对声子和电子输运规律的影响以及结构相变或尺寸效应对Wiedemann-Franz定律的影响,可以精确理解声子、电子在微纳结构上的输运规律,从而为半导体工业寻找新材料提供精准的技术路线图。 In the semiconductor industry,Moore’s law predicts that every two years the number of transistors on the chip will double and the operation speed of the chip will double,too.At present,the ultra-high heat flux has become a bottleneck of Moore’s law.With the help of multiple material composition,more interfaces and size effect,the micro-nano structure may provide revolutionary technological solutions for semiconductor industry.By systematically studying the influence of size effect,strain field and temperature field on phonon and electron transport law and the influence of structural phase transition or size effect on Wiedemann-Franz law,the transport laws of phonon and electron in the micro-nano structure can be accurately understood,thus providing an accurate technical roadmap for the semiconductor industry in finding new materials.
作者 雍国清 张碧 王永康 胡长明 陈云飞 YONG Guoqing;ZHANG Bi;WANG Yongkang;HU Changming;CHEN Yunfei(Southeast University,Nanjing 211189,China;Nanjing Research Institute of Electronics Technology,Nanjing 210039,China)
出处 《电子机械工程》 2021年第5期1-13,共13页 Electro-Mechanical Engineering
关键词 摩尔 片上系统 微纳结构 微区拉曼 导热系数 界面热阻 Moore system on chip(SoC) micro-nano structure micro-Raman thermal conductivity interface thermal resistance
  • 相关文献

参考文献5

二级参考文献110

  • 1Kapitza P L. The study of heat transfer in helium II. J Phys, 1941, 11: 1-31.
  • 2Pollack G L. Kapitza resistance. Rev Mod Phys, 1969,41(1): 48-81 Swartz E T, Pohl R O. Thermal-boundary resistance. Rev Mod Phys, 1989,61(3):605-668.
  • 3Stevens R J, Zhigilei L V, Norris PM. Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces:.
  • 4Nonequilibrium molecular dynamics simulations. Int J Heat Mass Tran,2007,50(19-20):3977-3989.
  • 5Da Silva L W, Kaviany M. Micro-thermoelectric cooler: Interfacial effects on thermal and electrical transport. Int J Heat Mass Tran, 2004, 47(10-11): 2417-2435.
  • 6Mahan G D, Woods L M. Multilayer thermionic refrigeration. Phys Rev Lett, 1998,80(18): 4016-4019.
  • 7Cahill D G, Pohl R O. Thermal-conductivity of amorphous solids above the plateau. Phys Rev B, 1987,35(8): 4067-4073.
  • 8Lee S M, Cahill D G. Heat transport in thin dielectric films. J Appl Phys, 1997,81(6):2590-2595.
  • 9Cahill D G, Bullen A, Lee S M. Interface thermal conductance and the thermal conductivity of multilayer thin films. High Temp-High Press, 2000, 32(2): 135-142.
  • 10Borca-Tasciuc T, Kumar A R, Chen G. Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev Sci Instrum, 2001, 72(4): 2139-2147.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部