期刊文献+

同阶交换子群个数之集为{1,3}的有限群 被引量:8

Finite Groups Whose Set of the Number of Abelian Subgroups of the Same Order Is{1,3}
下载PDF
导出
摘要 证明了不存在同阶交换子群个数之集为{1,2}的有限群,并且完全确定了同阶交换子群个数之集为{1,3}的有限群结构.作为推论,得到:群G的同阶交换子群个数之集为{1,3}等价于群G的同阶子群个数之集为{1,3}. It is proved in this paper that there is no finite group G satisfying the condition that the set of the number of abelian subgroups of the same order is{1,2}.Furthermore,it is determined that the structure of the finite group G whose set of the number of abelian subgroups of the same order is{1,3}.It is,hence,derived that for a group G,the set of the number of abelian subgroups of the possible order is{1,3}if and only if the set of the number of subgroups of the possible order is{1,3}.
作者 钱焱 陈贵云 QIAN Yan;CHEN Guiyun(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第10期100-104,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(12071376).
关键词 同阶交换子群 群结构 abelian subgroup of the same order order group structure
  • 相关文献

参考文献11

二级参考文献69

共引文献29

同被引文献26

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部