摘要
证明了不存在同阶交换子群个数之集为{1,2}的有限群,并且完全确定了同阶交换子群个数之集为{1,3}的有限群结构.作为推论,得到:群G的同阶交换子群个数之集为{1,3}等价于群G的同阶子群个数之集为{1,3}.
It is proved in this paper that there is no finite group G satisfying the condition that the set of the number of abelian subgroups of the same order is{1,2}.Furthermore,it is determined that the structure of the finite group G whose set of the number of abelian subgroups of the same order is{1,3}.It is,hence,derived that for a group G,the set of the number of abelian subgroups of the possible order is{1,3}if and only if the set of the number of subgroups of the possible order is{1,3}.
作者
钱焱
陈贵云
QIAN Yan;CHEN Guiyun(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第10期100-104,共5页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(12071376).
关键词
同阶交换子群
阶
群结构
abelian subgroup of the same order
order
group structure