期刊文献+

线性随机时变系统的有限时间稳定性研究

Research on Finite Time Stability of Linear StochasticTime-varying System
下载PDF
导出
摘要 针对一类具有有限时间的随机微分时变系统,研究了关于随机线性时变系统的有限时间稳定性及控制器设计问题。首先,引入了有限时间稳定性的定义,基于该定义提出了一种针对假定的L yapunov函数满足分段连续性,在每一个分段点处可能不连续的有限时间稳定性的新方法,并借助切换系统的思想研究了随机时变系统的有限时间稳定性;在此基础上,考虑带有反馈控制器的随机时变系统的控制器设置问题,并通过采用逐段控制的方法给出了系统的控制器设置方法;最后基于线性矩阵不等式设计了一类线性随机时变系统的有限时间稳定控制器的算法,使得对于控制器的设置能够有效地实现。 For a class of stochastic differential systems with finite time,the finite time stability and controller design of stochastic linear time-varying systems are studied.First,the definition of finite-time stability is introduced.Based on this definition,a new method for finite-time stability where the assumed Lyapunov function satisfies piecewise continuity and may be discontinuous at each piecewise point is proposed.With the help of the idea of switching systems,the finite time stability of stochastic time-varying systems is studied.Then,based on the finite time stability of the stochastic time-varying system,the controller setting problem of the stochastic time-varying system with feedback controller is considered,and the system controller setting method is given by adopting the step-by-step control method.Finally,based on the linear matrix inequality,a class of linear stochastic time-varying system′s finite time stable controller algorithm is designed,so that the setting of the controller can be effectively realized.
作者 余勇 吴小太 YU Yong;WU Xiao-tai(School of Electrical Engineering,Anhui Polytechnic University,Anhui Wuhu 241000,China;School of Mathematics and Physics,Anhui Polytechnic University,Anhui Wuhu 241000,China)
出处 《重庆工商大学学报(自然科学版)》 2021年第5期37-41,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金资助(61873294).
关键词 有限时间稳定性 随机时变系统 线性系统 线性矩阵不等式 finite time stability stochastic time-varying system linear system linear matrix inequality
  • 相关文献

参考文献1

二级参考文献20

  • 1陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421. 被引量:30
  • 2LI Z, YANG X, GAO H. Autonomous impulsive rendezvous for spacecraft under orbital uncertainty and thruster faults [J]. Journal of the Franklin Institute, 2013, 350(9): 2455 - 2473.
  • 3PEREZ D, BEVILACQUA R. Differential drag spacecraft ren- dezvous using an adaptive Lyapunov control strategy [J]. Acta As- tronautica, 2013, 83(1): 196 - 207.
  • 4MA Y K, JI H B. Robust control for spacecraft rendezvous with dis- turbances and input saturation [J]. International Journal of Control, Automation and Systems, 2015, 13(2): 353 - 360.
  • 5GUO Y, SONG S, LI X H. Terminal sliding mode control for atti- tude tracking of spacecraft based on rotation matrix [J]. Mathematical Problems in Engineering, 2015. DOI: 10.1155/2015/187924.
  • 6SUN L, HUO W. Robust adaptive relative position tracking and at- titude synchronization for spacecraft rendezvous [J]. Aerospace Sci- ence and Technology, 2015, 41(1): 28 - 35.
  • 7WEISS A, BALDWIN M, ERWIN R S, et al. Model predictive con- trol for spacecraft rendezvous and docking: strategies for handling constraints and case studies [J]. IEEE Transactions on Control Sys- tems Technology, 2015, 23(4): 1638 - 1647.
  • 8WOLF M T, BURDICK J W. Artificial potential functions for high- way driving with collision avoidance [C]//IEEE International Con- ference on Robotics and Automation. Pasadena: IEEE, 2008, 5:3731 - 3736.
  • 9OLAND E, KRSTIANSEN R. Collision and terrain avoidance for UAVs using the potential field method [C]//IEEE Aerospace Confer- ence. Big Sky: IEEE, 2013, 3:1 - 7.
  • 10WEISS A, PETERSEN C, BALDWIN M, et al. Safe positively invari- ant sets for spacecraft obstacle avoidance [J]. Journal of Guidance, Control, and Dynamics, 2014, 38(4): 720- 732.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部