期刊文献+

Hilbert Genus Fields of Imaginary Biquadratic Fields

原文传递
导出
摘要 Let K_(0)=Q(√δ)beaquadraticfield.Forthose K_(0) withoddclassnumber,much work has been done on the explicit construction of the Hilbert genus field of a biquadratic extension K=Q(√δ,√d)over Q.Whenδ=2 or p with p≡1 mod 4 a prime and K is real,it was described in Yue(Ramanujan J 21:17–25,2010)and Bae and Yue(Ramanujan J 24:161–181,2011).In this paper,we describe the Hilbert genus field of K explicitly when K_(0) is real and K is imaginary.In fact,we give the explicit construction of the Hilbert genus field of any imaginary biquadratic field which contains a real quadratic subfield of odd class number.
出处 《Communications in Mathematics and Statistics》 SCIE 2017年第2期175-197,共23页 数学与统计通讯(英文)
基金 partially supported by National Key Basic Research Program of China(Grant No.2013CB834202) National Natural Science Foundation of China(Nos.11501429,11171150 and 11171317) Fundamental Research Funds for the Central Universities(Grant No.JB150706).
  • 相关文献

参考文献1

二级参考文献8

  • 1Bae S, Yue Q. Hilbert genus fields of real biquadratic fields. Ramanujan J, 2011, 24: 161-181.
  • 2Conner P E, Hurrelbrink J. Class Number Parity, Ser Pure Math 8. Singapore: World Scientific, 1988.
  • 3Herglotz G. über einen Dirichletschen Satz. Math Z, 1922, 12: 225-261.
  • 4Lang S. Cyclotomic Fields I and Ⅱ. GTM 121. New York: Springer-Verlag, 1990.
  • 5Neukirch J. Class Field Theory. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1986.
  • 6Sime P. Hilbert class fields of real biquadratic fields. J Number Theory, 1995, 50: 154-166.
  • 7Yue Q. The generalized Rédei matrix. Math Z, 2009, 261: 23-37.
  • 8Yue Q. Genus fields of real biquadratic fields. Ramanujan J, 2010, 21: 17-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部