期刊文献+

Special Flow, Weak Mixing and Complexity Dedicated to celebrate the Sixtieth anniversary of USTC 被引量:1

原文传递
导出
摘要 We focus on the complexity of a special flow built over an irrational rotation of the unit circle and under a roof function on the unit circle.We construct a weak mixing minimal special flow with bounded topological complexity.We also prove that if the roof function is C^(∞),then the special flow has sub-polynomial topological complexity and the time one map meets the condition of Sarnak’s conjecture.
出处 《Communications in Mathematics and Statistics》 SCIE 2019年第1期85-122,共38页 数学与统计通讯(英文)
基金 supported by NNSF of China(11431012,11731003) supported by NNSF of China(11801538,11871188).
  • 相关文献

参考文献1

二级参考文献13

  • 1Auslander J. Minimal Flows and Their Extensions. Amsterdam: Elsevier, 1988.
  • 2Blanchard F, Host B, Maass A. Topological complexity. Ergodic Theory Dynam Systems, 2000, 20:641-662.
  • 3Dong P D, Donoso S, Maass A, et al. Infinite-step nilsystems, independence and topological complexity. Ergodic Theory Dynam Systems, 2013, 33:118-143.
  • 4Donoso S. Enveloping semigroups of systems of order d. Discrete Contin Dyn Syst, 2014, 34:2729-2740 E.
  • 5insiedler M, Ward T. Ergodic Theory: With a View towards Number Theory. Berlin: Springer-Verlag, 2011.
  • 6Fr~czek K. Measure-preserving diffeomorphisms of the torus. Ergodic Theory Dynam Systems, 2001, 21:1759-1781.
  • 7Fr~czek K. On difffeomorphisms with polynomial growth of the derivative on surfaces. Colloq Math, 2004, 99:75-90.
  • 8Furstenberg H. Strict ergodicity and transformation on the torus. Amer J Math, 1961, 83:573-601.
  • 9Clasner E. Minimal nil-transformations of class two. Israel J Math, 1993, 81:31-51.
  • 10Host B, Kra B, Maass A. Complexity of nilsystems and systems lacking nilfactors. J Anal Math, 2014, 124:261-295.

共引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部