期刊文献+

基于马尔科夫过程的储备系统稳态性能分析 被引量:2

Markov Process-based Performance Analysis of Standby Systems for the Steady State
下载PDF
导出
摘要 由于储备系统组成部件在存储期间的失效概率各不相同,当部件状态趋于稳定时,各个状态对系统性能的影响也存在差异。为了识别关键部件及其状态对系统性能的影响程度,本文以重要度为主要指标,应用马尔科夫过程研究储备系统在稳态时的性能变化模式。首先基于综合重要度研究系统性能的变化规律,并结合冷储备系统和温储备系统的状态转移矩阵推导出马尔科夫过程中稳态值的计算方法;其次基于稳态综合重要度获得系统稳态时的性能变化模式;最后以双臂机器人为例,分析部件处于不同状态时对系统性能的影响模式,比较了不同部件综合重要度的变化,验证了提出方法的有效性。 The failure probability of each component in a standby system is different,and as a result,the deteriorate states have a distinguishing influence on the system as the component becomes stable.The importance measures can quantitatively describe the effects of failure or state transactions of components on the system reliability.In order to identify the degree of influence of key components and their status on system performance,this paper uses importance as the main index and applies Markov processes to study the performance change pattern of standby systems at steady state.First of all,based on the comprehensive importance,the variation of the system performance is studied,and the system state transition matrix is combined to derive the calculation method of the steady state value in Markov process for cold standby system and warm standby system.Then we obtain the change law of the system performance in steady state based on comprehensive importance.At last,a numerical example of the two-armed industrial robot is used to analyze the different effects on the system performance of different component states,and demonstrate the developed method.
作者 舒萍 顾奕翀 王嘉 白光晗 罗豪元 SHU Ping;GU Yi-chong;WANG Jia;BAI Guang-han;LUO Hao-yuan(Chongqing Qianwei Technologies Group Co. , Ltd, Chongqing 401121, China;Shanghai Marine Equipment Research Institute, Shanghai 200031, China;School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;Intelligence Science College, National University of Defense Technology, Changsha 10073, China;Unit 32256, Guangzhou 510000, China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2021年第9期43-47,共5页 Operations Research and Management Science
基金 国家自然科学基金青年项目(72001069) 河北省优秀青年基金项目(E2021202094)。
关键词 马尔科夫过程 储备系统 重要度 性能 Markov process standby system importance measure performance
  • 相关文献

参考文献5

二级参考文献45

  • 1何旭洪,童节娟,黄祥瑞.核电站概率安全分析中人因事件的风险重要性[J].清华大学学报(自然科学版),2004,44(6):748-750. 被引量:14
  • 2何爱民,赵先,崔利荣,解伟娟.线形可重叠的m-consecutive-k-out-of-n:F系统可靠性和单元重要度研究[J].兵工学报,2009,30(S1):135-138. 被引量:4
  • 3高雪莉,崔利荣.单元重要度在可靠性工程中的应用[J].国防技术基础,2005(12):1-4. 被引量:9
  • 4霍超,张沛超.全数字化保护系统考虑经济性的元件重要度分析[J].电力系统自动化,2007,31(13):57-62. 被引量:11
  • 5Kiureghian A D, Ditlevsen O D and Song. Availability, reliability and downtime of systems with repairable components[J]. Reliability Engineering and System Safety, 2007(92): 231-242.
  • 6Peng H, Feng Q M and Coit D W. Reliability and maintenance modeling for systems subject tomultiple dependent competing failure processes[J]. IIE Transactions, 2011(43): 12-22.
  • 7Vlad Stefan Barbu, Jan Bulla and Antonello Maruotti. Estimation of the stationary distribution of a semi-Markov chain[J]. Journal of Reliability and Statistical Studies, 2012(5): 15-26.
  • 8Ourania Chryssaphinou, Nikolaos Limnios, and Sonia Malefaki. Multi-State Reliability Systems Under Discrete Time Semi-Markovian Hypothesis[J]. IEEE Transactions on reliability, 2011(60): 80-87.
  • 9Jasper F L. van Casteren, Math H J Bollen. Reliability assessment in electrical power systems: the weibull-markov stochastic model[J]. IEEE Transactions on Industry Applications, 2000(36): 911-915.
  • 10Mihael Perman, Andrej Senegacnik and Matija Tuma. Semi-markov models with an application to power-plant reliability analysis[J]. IEEE Transactions on reliability, 1997(46): 526-531.

共引文献26

同被引文献25

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部