期刊文献+

Radicals and Kothe’s Conjecture for Skew PBW Extensions

原文传递
导出
摘要 The aim of this paper is to investigate different radicals(Wedderburn radical,lower nil radical,Levitzky radical,upper nil radical,the set of all nilpotent elements,the sum of all nil left ideals)of the noncommutative rings known as skew Poincare–Birkhoff–Witt extensions.We characterize minimal prime ideals of these rings and prove that the Kothe’s conjecture holds for these extensions.Finally,we establish the transfer of several ring-theoretical properties(reduced,symmetric,reversible,2-primal)from the coefficients ring of a skew PBW extension to the extension itself.
出处 《Communications in Mathematics and Statistics》 SCIE 2021年第2期119-138,共20页 数学与统计通讯(英文)
基金 The first author was supported by the research fund of Facultad de Ciencias,Code HERMES 41535,Universidad Nacional de Colombia,Bogota,Colombia。
  • 相关文献

参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部