期刊文献+

A Classification of Finite Metahamiltonian p-Groups

原文传递
导出
摘要 A finite non-abelian group G is called metahamiltonian if every subgroup of G is either abelian or normal in G.If G is non-nilpotent,then the structure of G has been determined.If G is nilpotent,then the structure of G is determined by the structure of its Sylow subgroups.However,the classification of finite metahamiltonian p-groups is an unsolved problem.In this paper,finite metahamiltonian p-groups are completely classified up to isomorphism.
出处 《Communications in Mathematics and Statistics》 SCIE 2021年第2期239-260,共22页 数学与统计通讯(英文)
基金 This work was supported by NSFC(Nos.11971280,11771258).
  • 相关文献

参考文献8

二级参考文献35

  • 1An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅳ). ArXiv:1310.5503.
  • 2Berkovich Y. Groups of Prime Power Order I. Berlin-New York: Walter de Gruyter, 2008.
  • 3Fang X G, An L J. A classification of finite metahamiltonian p-groups. ArXiv:1310.5509.
  • 4Hall M, Senior J K. The Groups of Order 2n (n≤ 6). New York: MacMillan, 1964.
  • 5Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 6Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅲ). ArXiv:1310.5496.
  • 7Qu H P, Yang S S, Xu M Y, et al. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅰ). J Algebra,2012, 358: 178-188.
  • 8Qu H P, Zhao L B, Gao J, et al. Finite p-groups with a minimal non-abelian subgroup of index p (V). J Algebra Appl, submitted.
  • 9Tuan H F. A theorem about p-groups with abelian subgroup of index p. Acad Sinica Science Record, 1950, 3: 17-23.
  • 10Xu M Y. An Introduction to Finite Groups (in Chinese). Beijing: Science Press, 1987.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部