期刊文献+

Graph-based multivariate conditional autoregressive models

原文传递
导出
摘要 The conditional autoregressive model is a routinely used statistical model for areal data thatarise from, for instances, epidemiological, socio-economic or ecological studies. Various multivariate conditional autoregressive models have also been extensively studied in the literatureand it has been shown that extending from the univariate case to the multivariate case is nottrivial. The difficulties lie in many aspects, including validity, interpretability, flexibility and computational feasibility of the model. In this paper, we approach the multivariate modelling froman element-based perspective instead of the traditional vector-based perspective. We focus onthe joint adjacency structure of elements and discuss graphical structures for both the spatialand non-spatial domains. We assume that the graph for the spatial domain is generally knownand fixed while the graph for the non-spatial domain can be unknown and random. We proposea very general specification for the multivariate conditional modelling and then focus on threespecial cases, which are linked to well-known models in the literature. Bayesian inference forparameter learning and graph learning is provided for the focused cases, and finally, an examplewith public health data is illustrated.
作者 Ye Liang
出处 《Statistical Theory and Related Fields》 2019年第2期158-169,共12页 统计理论及其应用(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部