期刊文献+

Alternating Direction Method of Multipliers for Solving Dictionary Learning Models

原文传递
导出
摘要 In recent years,there has been a growing usage of sparse representations in signal processing.This paper revisits theK-SVD,an algorithm for designing overcomplete dictionaries for sparse and redundant representations.We present a newapproach to solve dictionary learning models by combining the alternating direction method of multipliers and the orthogonal matching pursuit.The experimental results show that our approach can reliably obtain better learned dictionary elements and outperform other algorithms.
出处 《Communications in Mathematics and Statistics》 SCIE 2015年第1期37-55,共19页 数学与统计通讯(英文)
  • 相关文献

参考文献1

二级参考文献34

  • 1Berry M W,Browne M,Langville A N,Pauca V P Plemmons R J. Algorithms andapplications for approximate nonnegative matrix factorization[J].Computational Statistics and Data Analysis,2007,(01):155-173.
  • 2Bertsekas D P,Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M].Upper Saddle River:Prentice-Hall,Inc,1989.
  • 3Biswas P,Lian T C,Wang T C,Ye Y. Semidefinite programming based algorithms for sensor network (l)ocalization[J].ACM Transactions on Sensor Networks,2006,(02):188-220.
  • 4Cai J F,Candes E J,Shen Z. A singular value thresholding algorithm for matrix completion export[J].SIAM Journal on Optimization,2010.1956-1982.
  • 5Candès E J,Li X,Ma Y,Wright J. Robust principal component analysis[J].Journal of the ACM,2011,(03):11.
  • 6Candès E J,Recht B. Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,(06):717-772.doi:10.1007/s10208-009-9045-5.
  • 7Candès E J,Tao T. The power of convex relaxation:Near-optimal matrix completion[J].IEEE Transactions on Information theory,2010,(05):2053-2080.
  • 8Cichocki A,Morup M,Smaragdis P,Wang W,Zdunek R. Advances in Nonnegative Matrix and Tensor Factorization[A].New York:Hindawi Publishing Corporation,2008.
  • 9Cichocki A,Zdunek R,Phan A H,Amari S. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multiway Data Analysis and Blind Source Separation[M].Hoboken:John Wiley & Sons,Ltd,2009.
  • 10Fazel M. Matrix Rank Minimization with Applications[D].Stanford University,2002.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部