期刊文献+

废液焚烧炉SCR脱硝系统的建模及其预测控制 被引量:4

Modeling and predictive control of SCR denitrification system in waste liquid incinerator
下载PDF
导出
摘要 针对SCR脱硝系统非线性、大惯性等特点,采用基于自适应惯性权重粒子群优化算法(AIWPSO)的模型预测控制实现喷氨量的精准控制.首先,从SCR反应机理出发,建立其机理模型,并通过实际数据对模型进行验证;其次,引入AIWPSO优化的最小二乘支持向量机(LSSVM)模型,建立更为精确的脱硝系统出口NOx的预测模型.根据所建模型,结合AIWPSO优化的模型预测控制,使输出能快速跟踪设定值;最后,进行仿真对比实验.结果表明,相较于传统PID控制,这种新型控制策略能够准确地对喷氨量进行调节,在保证脱硝效率的同时能够减少NH_(3)使用量,实现了脱硝系统稳定经济运行. Aiming at the nonlinearity and large inertia of the SCR denitrification system,the model predictive control based on the adaptive inertia weighted particle swarm optimization algorithm(AIWPSO)is used to achieve precise control of the ammonia injection rate.Firstly,starting from the SCR reaction mechanism,establish its mechanism model,and verify the model with actual data.Secondly,the least square support vector machine(LSSVM)model optimized by AIWPSO is introduced to establish a more accurate prediction model of NOx exports from the denitration system.According to the built model,combined with AIWPSO optimized model predictive control,the output can quickly track the set value.Finally,a simulation comparison experiment shows that compared with the traditional PID control,this new control strategy can accurately adjust the amount of ammonia injection,while ensuring the denitrification efficiency,it can reduce the NH3 usage,and realize the stable and economic operation of the denitrification system.
作者 张萍 李明辉 陈倩 ZHANG Ping;LI Ming-hui;CHEN Qian(Department of Communication Engineering,Shaanxi Post Vocational and Technical College,Xianyang 712000,China;College of Mechanical and Electrical Engineering,Shaanxi University of Science&Technology,Xi'an 710021,China;School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi'an 710021,China)
出处 《陕西科技大学学报》 北大核心 2021年第5期167-173,186,共8页 Journal of Shaanxi University of Science & Technology
基金 陕西科技大学教改研究项目(JG201806)。
关键词 SCR 烟气脱硝 LSSVM 预测模型 AIWPSO 废液焚烧炉 SCR flue gas denitrification LSSVM prediction model AIWPSO waste liquid incinerator
  • 相关文献

参考文献16

二级参考文献275

共引文献419

同被引文献46

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部