期刊文献+

基于机器学习的电影评分预测研究 被引量:2

Research on Movie Score Prediction Based on Machine Learning
下载PDF
导出
摘要 本文依据电影是人们日常生活中重要的娱乐方式之一,用户在选择观看一部电影前,通常会想通过已观看过用户对电影的评分或是评论来了解这部电影的是否值得观看的需求。评分预测(rating prediction)在个性化推荐研究领域中可以被理解为:被用来作为预测用户对那些尚没有评价过的电影的评分的研究问题。本文工作首先对电影数据集进行数据预处理,随后重点研究了支持向量机(SVM)回归预测对电影评分进行预测,实验结果MAE的值表明支持向量机(SVM)回归预测在电影评分预测中取得较好的预测。 In this paper,the film is one of the important ways of entertainment in people's daily life.Before people choose to watch a film,they usually want to know the quality of a film through film rating or comments.In the field of personalized recommendation research,rating prediction can be understood as a research problem that is used to predict users'ratings of movies that have not been evaluated.This paper first preprocesses the movie data set,and then focuses on the support vector machine(SVM)regression prediction to predict the movie score.The experimental results show that the MAE value of support vector machine(SVM)regres⁃sion prediction achieves better prediction in the movie score prediction.
作者 李香君 肖小玲 LI Xiang-jun;XIAO Xiao-ling(School of Computer Science,Yangtze University,Jingzhou 434023,China)
出处 《电脑知识与技术》 2021年第27期109-111,共3页 Computer Knowledge and Technology
关键词 支持向量机 MAE 回归预测 Support vector machine MAE Regression prediction
  • 相关文献

参考文献8

二级参考文献68

  • 1蒋国瑞,司学峰.基于代价敏感SVM的电信客户流失预测研究[J].计算机应用研究,2009,26(2):521-523. 被引量:21
  • 2吕秀莹.浅析Web2.0环境下我国第三方点评网站的发展现状——以大众点评网和豆瓣网为例[J].东南大学学报(哲学社会科学版),2011,13(S1):87-92. 被引量:24
  • 3安娜,金朝嵩,刘志强.利用标准化波动率微笑预测期权价格的实证分析[J].经济数学,2007,24(1):10-14. 被引量:2
  • 4Cao L J, Tay F E H. Financial forecasting using support vector machines[J]. Neural Comput Appl, 2001(10) 184-192.
  • 5Kim K. Financial time series forecasting using support vector machines[J]. Neurocomputing, 2003, 55:307-319.
  • 6Tay F E H, Cao L J. Application of support vector machines in financial time series forecasting[J]. Omega, 2001 29:309 317.
  • 7Andreou P C, Charalambous C, Martzoukos S H. European option pricing by using the support vector regression approach[J]. Lecture Notes in Computer Science, 2009, 5768: 874-883.
  • 8Liang X, Zhang H S, Xiao J G, et al. Improving option price forecasts with neural networks and support vector regressions[J]. Neurocomputing, 2009, 72(13/15): 3055-3065.
  • 9Taxt T. Recognition of hand written symbols[J]. Pattern Recognition, 1990, 23(11): 1156-1166.
  • 10Brown C, Robinson D. Skewness and kurtosis implied by option prices: A correction[J]. Financial Res, 2002, 25 279-282.

共引文献227

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部