期刊文献+

基于改进布谷鸟搜索的k-means算法的离群点检测 被引量:1

Outlier Detection Based on Improved Cuckoo Search k-means Algorithm
下载PDF
导出
摘要 为了解决k-means算法的离群点检测容易受到初始聚类中心的影响陷入局部最优的问题,本文提出一种基于改进布谷鸟搜索的k-means算法的离群点检测方法。首先,对原始布谷鸟搜索算法中的发现概率和莱维飞行步长做自适应策略改进并进行实验仿真;其次讨论改进后的布谷鸟搜索算法的收敛性问题;最后将改进后的布谷鸟搜索算法与k-means的离群点检测算法融合成一种新的离群点检测算法——基于改进布谷鸟搜索的k-means算法的离群点检测。通过对UCI数据集进行仿真实验,结果表明,本文算法不仅精确度方面有着明显优势,而且在3个数据集上收敛速度均有改善,可有效地抑制k-means算法的离群点检测容易陷入局部最优的问题,缩短运行时间。 In order to solve the problem that the outlier detection of k-means algorithm is susceptible to fall into local optimality by the influence of the initial clustering center,an outlier detection based on the k-means algorithm of improving cuckoo search is proposed.Firstly,the adaptive strategy improvement is made to the discovery probability and Levy flight step size of the original cuckoo search algorithm,and the experimental simulation is carried out.Secondly,the convergence of the improved cuckoo search algorithm is discussed.Finally,the improved cuckoo search algorithm and the k-means outlier detection algorithm are fused into a new outlier detection algorithm:the outlier detection method based on the k-means algorithm of improved cuckoo search.Through the simulation experiments on UCI data sets,the results show that the proposed algorithm not only has obvious advantages in accuracy,but also improves the convergence speed on three data sets,which can effectively suppress the problem that the outlier detection of k-means algorithm is easy to fall into local optimality and shorten the running time.
作者 庄丽丽 石鸿雁 ZHUANG Li-li;SHI Hong-yan(School of Science,Shenyang University of Technology,Shenyang 110870,China)
出处 《计算机与现代化》 2021年第10期15-22,共8页 Computer and Modernization
基金 国家自然科学基金资助项目(61074005)。
关键词 离群点检测 K-MEANS算法 布谷鸟搜索算法 收敛性 outlier detection k-means algorithm cuckoo search algorithm convergence
  • 相关文献

参考文献18

二级参考文献164

共引文献296

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部