期刊文献+

提高口罩遮挡人脸识别准确度的研究 被引量:1

Research on improving the accuracy of face recognition in masko cclusion
下载PDF
导出
摘要 人脸识别目前应用于多个领域,受控性人脸识别现在有很高的准确度,超过人眼的97.35%,但由于新冠疫情的肆虐,导致大部分人在疫情期间外出都会佩戴口罩,导致识别的准确度降低。因此如何消除口罩遮挡对人脸识别产生的影响,从而提升口罩遮挡人脸识别准确度方面还有很大的研究空间。本文通过提取出未遮挡部分,对未遮挡部分hog特征提取并对提取的特征进行pca降维,通过对嘴巴检测判断是否佩戴口罩,另外加入canny边缘检测作为参考决策。 Face recognition is currently applied in many fields.Controlled face recognition has high accuracy,which is 97.35%higher than that of human eyes.But because of COVID-19’s wreak havoc,most people will wear masks when they go out during the epidemic,leading to the lower accuracy of recognition.Therefore,there is still a lot of research space to eliminate the influence of mask occlusion on face recognition,and improve the accuracy of face recognition.In this paper,the unhindered part is extracted,the features of the unhindered part of the hog are extracted and PCA dimension reduction is performed.The mouth detection is used to judge whether to wear mask or not,and Canny edge detection is added as a reference decision.
作者 侯现坤 周玮 Hou Xiankun;Zhou Wei(Suzhou University,Suzhou Anhui,234000)
机构地区 宿州学院
出处 《电子测试》 2021年第18期54-55,60,共3页 Electronic Test
基金 2016宿州学院重点科研项目“基于弹性虚拟池的云计算数据中心节能研究(2016yzd10)” 2020年省级大学生创新训练项目“提高口罩遮挡人脸识别准确度的研究(S202010379128)” 2021年国家级创新训练项目“提高口罩遮挡人脸识别准确度的研究(202110379028)”。
关键词 口罩遮挡 HOG特征 区域比例 边缘检测 Mask occlusion Hog feature Regional proportion edge detection
  • 相关文献

参考文献5

二级参考文献29

  • 1杨顺辽.基于Hough变换提取直线的改进方法研究[J].电脑与信息技术,2006,14(5):29-31. 被引量:24
  • 2夏磊,蔡超,周成平,丁明跃.一种用Hough变换检测圆的快速算法[J].计算机应用研究,2007,24(10):197-199. 被引量:30
  • 3Viola P,Jones M J. Robust real-time face detection[ J]. International journal of computer vision ,2004,57 (2) : 137 - 154.
  • 4Dalai N ,Triggs B. Histograms of oriented gradients for human detec- tion[ C ]//Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, 2005: 886- 893.
  • 5Ojala T,Pietikginen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pat- tern recognition, 1996,29( 1 ) :51 -59.
  • 6Wu B, Nevatia R. Detection of multiple, partially occluded humans in a "single image by bayesian combination of edgelet part detectors [ C]//Computer Vision,2005. ICCV 2005.Tenth IEEE International Conference on, IEEE,2005:90 - 97.
  • 7Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling [ C ]//Computer Vision ,2009 IEEE 12th Interna- tional Conference on, IEEE ,2009:32 - 39.
  • 8Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2002,24(7) :971 -987.
  • 9Wang P,Shen C, Barnes N, et al. Fast and robust object detection using asymmetric totally corrective boosting [ J ]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23 ( 1 ) :33 - 46.
  • 10Kobayashi T, Hidaka A, Kurita T. Selection of histograms of oriented gradients features for pedestrian detection [ C]//Neural Information Processing, Springer,2008 : 598 - 607.

共引文献82

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部