期刊文献+

改进Apriori算法挖掘妊娠期糖尿病患数据 被引量:1

Mining Data of Gestational Diabetes Mellitus Using Improved Apriori Algorithm
下载PDF
导出
摘要 通过将相同事务压缩成一行,对原始事务矩阵进行约简,利用事务矩阵与候选项集-项集矩阵相乘得到候选项集-事务矩阵,从而得到候选项集的支持度数;在连接步时采用事先剪枝的策略,减少参与连接的频繁项集;设计实现改进的基于布尔映射矩阵的Apriori算法,并将其应用于医院诊疗数据的挖掘分析。实验结果表明,算法挖掘获得妊娠期糖尿病的危险因素有:年龄≥35岁、身体质量指数(BMI)≥30、孕次≥3、引产次数≥3以及产次≥3。 By compressing the same transaction into one line,the original transaction matrix is reduced,and the candidate itemset transaction matrix is obtained by multiplying the transaction matrix and candidate itemset matrix.The pruning strategy is adopted in the join step to reduce the frequent item sets participating in the join.The improved Apriori algorithm based on Boolean mapping matrix is designed and implemented,and it is applied to the mining and analysis of hospital diagnosis and treatment data.The experimental results show that the risk factors of gestational diabetes mellitus mined by the given algorithm are age≥35 years old,body mass index(BMI)≥30,pregnancies≥3,induced labor≥3,and births≥3.
作者 黄嘉欣 Huang Jiaxin(School of Computer,Electronics and Information,Guangxi University,Nannning 530004;Department of Information Engineering,Liuzhou Maternity and Child Healthcare Hospital,Liuzhou 545001)
出处 《现代计算机》 2021年第25期14-19,共6页 Modern Computer
关键词 数据挖掘 妊娠 糖尿病患 APRIORI算法 data mining pregnancy diabetes Apriori algorithm
  • 相关文献

参考文献8

二级参考文献61

  • 1章志刚,吉根林.基于迭代式MapReduce的Apriori算法设计与实现[J].华中科技大学学报(自然科学版),2012,40(S1):9-12. 被引量:8
  • 2朱天清,熊平.模糊关联规则挖掘及其算法研究[J].武汉工业学院学报,2005,24(1):24-28. 被引量:9
  • 3曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 4谷保平,许孝元,郭红艳.基于粒子群优化的k均值算法在网络入侵检测中的应用[J].计算机应用,2007,27(6):1368-1370. 被引量:24
  • 5Li Tianrui,Pan Wuming.Intrusion Detection System Based on New Association Rule Mining Model[A].Granular Computing,2005 IEEE International Conference[C].2005,2:512-515.
  • 6Han Jiawei,Kamber M.Data Mining:Concepts and Techniques[M].China Machine Press,2007.
  • 7Ji Lei,Zhang Baowen,Li Jianhua.A New Improvement on Apriori Algorithm[A].2006 International Conference on Computational Intelligence and Security[C].2006,1:840-844.
  • 8Kuok C,Fu A,Wong M.Mining Fuzzy Association Rules in Databases[J].ACM SIGMOD Record,1998,27(1):41-46.
  • 9Agarwal R,Aggrawal C,Prasad V V V.A Tree Projection Algorithm for Generation of Frequent Itemsets[J].Journal of Parallel and Distributed Computing,2000:427-434.
  • 10Holt J D,Chung S M.Mining Association Rules in Text Databases Using Multipass with Inverted Hashing and Pruning Tools with Artificial Intelligence[A].ICTAI[C].2002:49-56.

共引文献162

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部