期刊文献+

基于轻量级YOLO的行人和车辆检测 被引量:2

Pedestrian and Vehicle Detection Based on Lightweight YOLO
下载PDF
导出
摘要 针对道路上的行人和车辆的目标检测问题,提出了一种改进型YOLOv4的轻量级检测网络YOLOSpring,通过在YOLOv4骨干网络中加入深度可分离卷积结构来简化网络模型,并减少网络模型中的残差块的数量,通过使用K-means聚类方法对车辆和行人锚点框进行重新聚类,改进后的网络模型具有网络参数少,检测精度高的优点。算法在实时交通场景下进行模型训练,检测目标包括行人、小汽车、大巴、摩托车和自行车。实验数据抽取了PASCAL VOC 2007数据集中的Person、Car、Bus、Motorcycle、Bicycle共5个种类的图片样本进行训练和测试,实验结果显示较原算法在检测精度上提高了5%。 For pedestrians and vehicles on the road of the target detection problem,this paper proposes a modified YOLOv4 lightweight detection network,YOLO-Spring,through add depth in backbone networks YOLOv4 separable convolution model to simplify the network structure,and reduce the amount of residual block in the network model,by using the K-means clustering method of vehicles and pedestrians to clustering anchor box,the improved network model has the advantages of low network parameters,the advantages of high detection precision.the algorithm carries out model training under real-time traffic scenes,and the detection targets include:pedestrians,cars,buses,motorcycles and bicycles.Experimental data were extracted from 5 photo samples of person,Car,Bus,Motorcycle and bicycle in the PASCAL VOC data set in 2007 for training and testing.The experimental results showed that the detection accuracy was improved by 5%points compared with the original algorithm.
作者 敖为能 Ao Weineng(School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411100)
出处 《现代计算机》 2021年第25期51-56,共6页 Modern Computer
关键词 行人检测 车辆检测 深度可分离卷积 轻量级 YOLOv4 pedestrian detection detecting test of vehicle depth separable convolution lightweight YOLOv4
  • 相关文献

参考文献6

二级参考文献23

  • 1Enzweiler M, Gavrila D M. Monocular Pedestrian Detection: Survey and Experiments [ J ]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179-2195.
  • 2Zhang L, Nevatia R. Efficient Scan-window Based Object Detection Using GPGPU [ C ]//Proceedings of 2008 IEEE Computer Society Confence on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press ,2008 : 1-7.
  • 3Bauer S, Kohler S, Doll K, et al. FPGA-GPU Architecture for Kernel SVM Pedestrian Detection [ C ]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C. ,USA:IEEE Press,2010:61-68.
  • 4Chen Yanping,Li Shaozi,Lin Xianming. Fast Hog Feature Computation Based on CUDA [ C ]//Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering. Washington D.C., USA: IEEE Press ,2011:748-751.
  • 5Cao T P, Deng Guang. Real-time Vision-based Stop Sign Detection System on FPGA I C //Proceedings of DICTA' 08. Washington D. C. , USA : IEEE Press, 2008 : 465-471.
  • 6Kadota R, Sugano H, Hiromoto M, et al. Hardware Architecture for HOG Feature Extraction I C //Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington D.C. , USA: IEEE Press ,2009 : 1330-1333.
  • 7Hiromoto M,Miyamoto R. Hardware Architecture for High- accuracy Real-time Pedestrian Detection with CoHOG Features [ C ]//Proceedings of the 12th International Conference on Computer Vision. Washington D. C. , USA: IEEE Press ,2009:894-899.
  • 8Negi K,Dohi K, Shibata Y, et al. Deep Pipelined Onechip FPGA Implementation of a Real-time Image-based Human Detection Algorithm I C ]//Proceedings of Inter- national Conference on Field-programmable Technology.Washington D. C. , USA : IEEE Press ,2011 : 1-8.
  • 9Mizuno K, Terachi Y, Takagi K, et al. Architectural Study of HOG Feature Extraction Processor for Real- time Object Detection [ C ]//Proceedings of 2012 IEEE Workshop on Signal Processing Systems (SiPS). Washington D. C. , USA : IEEE Press ,2012 : 197-202.
  • 10Hahnle M, Saxen F, Hisung M, et al. FPGA-based Real- time Pedestrian Detection on High-resolution Images[ C // Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press ,2013:629-635.

共引文献250

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部