期刊文献+

激光同轴送粉增材较高试样温度场的传热特性

Heat Transfer Characteristics of Temperature Field in Laser Coaxial Powder Feeding Additive Manufacturing Higher Sample
下载PDF
导出
摘要 采用ANSYS Mechanical中的ANSYS参数化设计语言(ANSYS Parametric Design Language,APDL)模拟激光同轴送粉增材制造较高试样的温度场,分析其传热特性。结果表明:当试样高度较小时,基板最低温度会随高度增大而增大;当试样高度达到一定数值后,会导致温度逐渐下降;随着试样高度增加,基板高温区域逐步向试样投影区靠拢,范围缩小,但熔池温度略有上升;随着高度增加,节点热循环曲线中谷值温度增加,冷却时降温速率增大。 ANSYS Parametric Design Language(APDL)in ANSYS Mechanical is used to simulate the temperature field of the higher sample made by laser coaxial powder feeding additive manufacturing and analyze its heat transfer characteristics.The results show that when the height of the sample is small,the minimum temperature of the substrate will increase with the increase of the height,but when the height of the sample reaches a certain value,it will gradually decrease.With the increase of the height of the sample,the high temperature region of the substrate gradually approaches to the projection region of the sample,and the range decreases,but the temperature of the molten pool increases slightly.With the increase of height,the valley temperature in the thermal cycle curve increases,and the cooling rate increases.
作者 王霞 王维 WANG Xia;WANG Wei(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870;School of Mechatronics Engineering,Shenyang Aerospace University,Shenyang 110136)
出处 《现代制造技术与装备》 2021年第9期40-41,共2页 Modern Manufacturing Technology and Equipment
关键词 激光同轴送粉 增材制造 有限元分析 温度场模拟 laser coaxial powder feeding additive manufacturing finite element analysis temperature field simulation
  • 相关文献

参考文献3

二级参考文献58

  • 1顾冬冬,沈以赴.基于选区激光熔化的金属零件快速成形现状与技术展望[J].航空制造技术,2012,55(8):32-37. 被引量:53
  • 2颜敏,张述泉,王华明.激光熔化沉积AerMet 100耐蚀超高强度钢的凝固组织及力学性能[J].金属学报,2007,43(5):472-476. 被引量:15
  • 3Arcella F G,Froes F H.Producing titanium aerospace components from powder using laser forming[J].JOM,2000,52(5):28-30.
  • 4Breinan E M,Kear B H.Rapid solidification laser processing at high power density[J].Materials ProcessingTheory and Practices,1983,3:235-295.
  • 5US National Science and Technology Council.National network for manufacturing innovation:a preliminary design[EB/OL].(2013-01-10)[2014-07-22].http://www.whitehouse.gov / sites/ default/ files/ microsites/ ostp/ nste _nnmi_prelim_design_ final.pdf.
  • 6Gamann M,Bezencon C,Canalis P,et al.Single-crystal laser deposition of super-alloys:processing-microstructure maps[J].Acta Materialia,2001,49(6):1051-1062.
  • 7Dinda G P,Dasgupta A K,Mazumder J.Laser aided direct metal deposition of Inconel 625 superalloy:Microstructural evolution and thermal stability[J].Materials Science and Engineering:A,2009,509(1-2):98-104.
  • 8Hussein N I S,Segal J,McCartney D G,et al.Microstructure formation in Waspaloy multilayer builds following direct metal deposition with laser and wire[J].Materials Science and Engineering:A,2008,497 (1-2):260-269.
  • 9Moata R J,Pinkerton A J,Li L,et al.Residual stresses in laser direct metal deposited Waspaloy[J].Materials Science and Engineering:A,2011,528(6):2288-2298.
  • 10Susana D,Puskar J D,Brooks J A,et al.Quantitative characterization of porosity in stainless steel LENS powders and deposits[J].Materials Characterization,2006,57(1):36-43.

共引文献574

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部