摘要
故障诊断技术能够为仪器设备的正常运行提供一定的保障,并且能够保障生产效率和经济效益。本次研究利用混沌粒子群优化算法对VMD进行优化,并通过优化VMD对振动机转动轴承的故障检测结果,验证了优化VMD用于故障诊断的有效性,并将优化VMD诊断识别结果与未经优化VMD诊断识别信号结果进行对比。结果表明,与未经优化的VMD方法分解相比,经过优化的VMD方法分解故障信号频率时,不存在其他的干扰频率,可以提取较为微弱的特征频率信息,能够更有效地检测出振动机转动轴承的故障频率。
fault diagnosis technology can provide certain guarantee for normal operation of instruments and equipment,and can guarantee production efficiency and economic benefits.In this study,chaos particle swarm optimization algorithm is used to optimize the VMD,and by optimizing the VMD fault detection results of the vibration machine bearing,the effectiveness of the optimized VMD for fault diagnosis is verified,and the diagnosis and recognition results of the optimized VMD are compared with the results of the non optimized VMD diagnosis and recognition signal.The results show that,compared with the non optimized VMD method,the optimized VMD method has no other interference frequency when decomposing the fault signal frequency.
作者
姚晓莉
YAO Xiao-li(Chizhou vocational and technical college,Chizhou 247100,Anhui,China)
出处
《贵阳学院学报(自然科学版)》
2021年第3期18-22,共5页
Journal of Guiyang University:Natural Sciences
基金
安徽省院级重点教学研究项目“基于CDIO理念的高职院校移动UI界面设计的教学研究”(项目编号:2020jyxm07)
安徽省院级重点教学研究项目“《3Dmax三维建模》课程教学改革的实践与创新”(项目编号:2020jyxm09)。
关键词
VMD
粒子群优化
故障诊断
VMD
particle swarm optimization
fault diagnosis